Explicit peaked wave solutions to the generalized Camassa-Holm equation

被引:2
|
作者
Xu, Zhen-hui [1 ]
Liu, Xi-qiang [2 ]
机构
[1] SW Univ Sci & Technol, Appl Technol Coll, Mianyang 621010, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
来源
关键词
The generalized Camassa-Holm equation; periodic cusp wave; explicit peaked wave solution; PEAKONS;
D O I
10.1007/s10255-008-8116-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing auxiliary differential equations, we obtain peaked solitary wave solutions of the generalized Camassa-Holm equation, including periodic cusp waves expressed in terms of elliptic functions.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [11] BIFURCATIONS OF TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Wei, Minzhi
    Sun, Xianbo
    Zhu, Hongying
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (06): : 1851 - 1862
  • [12] Global solutions for the generalized Camassa-Holm equation
    Chen, Lina
    Guan, Chunxia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [13] New explicit exact traveling wave solutions of Camassa-Holm equation
    Zhang, Guoping
    Zhang, Maxwell
    APPLICABLE ANALYSIS, 2021,
  • [14] CLASSICAL SOLUTIONS OF THE GENERALIZED CAMASSA-HOLM EQUATION
    Holmes, John
    Thompson, Ryan C.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2017, 22 (5-6) : 339 - 362
  • [15] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Li, Jibin
    Qiao, Zhijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [16] A Note on Solitary Wave Solutions of the Nonlinear Generalized Camassa-Holm Equation
    Zhang, Lei
    Wang, Xing Tao
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [17] Peakons and periodic cusp wave solutions in a generalized Camassa-Holm equation
    Zhang, Lijun
    Chen, Li-Qun
    Huo, Xuwen
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1238 - 1249
  • [18] Single peak solitary wave solutions for the generalized Camassa-Holm equation
    Li, Hong
    Ma, Lilin
    Wang, Kanmin
    APPLICABLE ANALYSIS, 2014, 93 (09) : 1909 - 1920
  • [19] Traveling wave solutions of the Camassa-Holm equation
    Lenells, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (02) : 393 - 430
  • [20] Explicit and implicit solutions of a generalized Camassa-Holm Kadomtsev-Petviashvili equation
    Xie, Shaolong
    Wang, Lin
    Zhang, Yuzhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) : 1130 - 1141