Ultrafast Spontaneous Emission from a Slot-Antenna Coupled WSe2 Monolayer

被引:16
|
作者
Eggleston, Michael S. [1 ,4 ]
Desai, Sujay B. [1 ,2 ]
Messer, Kevin [1 ]
Fortuna, Seth A. [1 ]
Madhvapathy, Surabhi [1 ,2 ]
Xiao, Jun [3 ]
Zhang, Xiang [2 ,3 ]
Yablonovitch, Eli [1 ]
Javey, Ali [1 ,2 ]
Wu, Ming C. [1 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
[4] Nokia Bell Labs, Murray Hill, NJ 07974 USA
来源
ACS PHOTONICS | 2018年 / 5卷 / 07期
基金
美国国家科学基金会;
关键词
optical antenna; nanoLED; 2D materials; metal optics; nanophotonics; plasmonics; LIGHT-EMISSION; OPTICAL ANTENNAS; SINGLE-MOLECULE; ENHANCEMENT; PHOTOLUMINESCENCE; MONO;
D O I
10.1021/acsphotonics.8b00381
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical antennas can enhance the spontaneous emission rate from nanoemitters by orders of magnitude, enabling the possibility of an ultrafast, efficient, nanoscale LED, Semiconductors would be the preferred material for such a device to allow for direct high-speed modulation. However, efficient nanoscale devices are challenging to implement because of high surface recombination typical of most aerials. Monolayer transition metal dichalcogenides are an attractive alternative to a III-V emitter due to their intrinsically nanoscale dimensions, direct bandgap, and near ideal surfaces resulting in high intrinsic quantum yield. In tixis work, we couple a nanostrip (30 nm X 250 nm) monolayer of WSe2 to a cavity-backed optical slot antenna through a self-aligned fabrication process. Photoluminescence, scattering, and lifetime measurements are used to estimate a radiative spontaneous emission rate enhancement of 318X from WSe2 monolayers coupled to on-resonance antennas. Such a huge increase in the spontaneous emission rate results in an ultrafast radiative recombination rate and a quantum yield in nanopatterned monolayers comparable to unprocessed exfoliated flakes of WSe2.
引用
收藏
页码:2701 / 2705
页数:9
相关论文
共 50 条
  • [31] Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2
    Wang, Jintao
    Lu, Wei
    Li, Jiarong
    Chen, Hao
    Jiang, Zike
    Wang, Jinzhang
    Zhang, Wenfei
    Zhang, Min
    Li, Irene Ling
    Xu, Zihan
    Liu, Wenjun
    Yan, Peiguang
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (03)
  • [32] Nonclassical Exciton Diffusion in Monolayer WSe2
    Wagner, Koloman
    Zipfel, Jonas
    Rosati, Roberto
    Wietek, Edith
    Ziegler, Jonas D.
    Brem, Samuel
    Perea-Causin, Raul
    Taniguchi, Takashi
    Watanabe, Kenji
    Glazov, Mikhail M.
    Malic, Ermin
    Chernikov, Alexey
    PHYSICAL REVIEW LETTERS, 2021, 127 (07)
  • [33] Tightly Bound Excitons in Monolayer WSe2
    He, Keliang
    Kumar, Nardeep
    Zhao, Liang
    Wang, Zefang
    Mak, Kin Fai
    Zhao, Hui
    Shan, Jie
    PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [34] Photoinduced trion absorption in monolayer WSe2
    Jeong, Tae Young
    Lee, Seong-Yeon
    Jung, Suyong
    Yee, Ki Ju
    CURRENT APPLIED PHYSICS, 2020, 20 (02) : 272 - 276
  • [35] Defect Activated Photoluminescence in WSe2 Monolayer
    Wu, Zhangting
    Zhao, Weiwei
    Jiang, Jie
    Zheng, Ting
    You, Yumeng
    Lu, Junpeng
    Ni, Zhenhua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (22): : 12294 - 12299
  • [36] Photoinduced doping in monolayer WSe2 transistors
    Wu, Zhangting
    Hong, Jintao
    Jiang, Jie
    Zheng, Peng
    Zheng, Liang
    Ni, Zhenhua
    Zhang, Yang
    APPLIED PHYSICS EXPRESS, 2019, 12 (09)
  • [37] Local piezoelectric doping of monolayer WSe2
    Balunov, P. A.
    Ankundinov, A. V.
    Breev, I. D.
    Dunaevskiy, M. S.
    Goltaev, A. S.
    Galimov, A. I.
    Jmerik, V. N.
    Likhachev, K. V.
    Rakhlin, M. V.
    Toropov, A. A.
    Vlasov, A. S.
    Mintairov, A. M.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [38] The growth study of bilayer and monolayer WSe2
    Feng, Chao
    Xiang, Junxiang
    Liu, Ping
    Xiang, Bin
    MATERIALS RESEARCH EXPRESS, 2017, 4 (09):
  • [39] Excitons in strained and suspended monolayer WSe2
    Aslan, Burak
    Yule, Colin
    Yu, Yifei
    Lee, Yan Joe
    Heinz, Tony F.
    Cao, Linyou
    Brongersma, Mark L.
    2D MATERIALS, 2022, 9 (01)
  • [40] Evidence of indirect gap in monolayer WSe2
    Hsu, Wei-Ting
    Lu, Li-Syuan
    Wang, Dean
    Huang, Jing-Kai
    Li, Ming-Yang
    Chang, Tay-Rong
    Chou, Yi-Chia
    Juang, Zhen-Yu
    Jeng, Horng-Tay
    Li, Lain-Jong
    Chang, Wen-Hao
    NATURE COMMUNICATIONS, 2017, 8