Deep Reinforcement Learning Based Mobile Robot Navigation: A Review

被引:159
|
作者
Zhu, Kai [1 ]
Zhang, Tao [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
关键词
mobile robot navigation; obstacle avoidance; deep reinforcement learning; DYNAMIC ENVIRONMENT; VISUAL NAVIGATION; NEURAL-NETWORKS; UAV; AVOIDANCE;
D O I
10.26599/TST.2021.9010012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Navigation is a fundamental problem of mobile robots, for which Deep Reinforcement Learning (DRL) has received significant attention because of its strong representation and experience learning abilities. There is a growing trend of applying DRL to mobile robot navigation. In this paper, we review DRL methods and DRL-based navigation frameworks. Then we systematically compare and analyze the relationship and differences between four typical application scenarios: local obstacle avoidance, indoor navigation, multi-robot navigation, and social navigation. Next, we describe the development of DRL-based navigation. Last, we discuss the challenges and some possible solutions regarding DRL-based navigation.
引用
收藏
页码:674 / 691
页数:18
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Based Mobile Robot Navigation:A Review
    Kai Zhu
    Tao Zhang
    [J]. Tsinghua Science and Technology, 2021, 26 (05) : 674 - 691
  • [2] Mobile Robot Navigation based on Deep Reinforcement Learning
    Ruan, Xiaogang
    Ren, Dingqi
    Zhu, Xiaoqing
    Huang, Jing
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 6174 - 6178
  • [3] Deep Reinforcement Learning for Mobile Robot Navigation
    Gromniak, Martin
    Stenzel, Jonas
    [J]. 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), 2019, : 68 - 73
  • [4] Deep Reinforcement Learning Based Mobile Robot Navigation in Crowd Environments
    Yang, Guang
    Guo, Yi
    [J]. 2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 513 - 519
  • [5] Navigation method for mobile robot based on hierarchical deep reinforcement learning
    Wang, Tong
    Li, Ao
    Song, Hai-Luo
    Liu, Wei
    Wang, Ming-Hui
    [J]. Kongzhi yu Juece/Control and Decision, 2022, 37 (11): : 2799 - 2807
  • [6] A novel mobile robot navigation method based on deep reinforcement learning
    Quan, Hao
    Li, Yansheng
    Zhang, Yi
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (03):
  • [7] Mobile Robot Navigation Using Deep Reinforcement Learning
    Lee, Min-Fan Ricky
    Yusuf, Sharfiden Hassen
    [J]. PROCESSES, 2022, 10 (12)
  • [8] A Behavior-Based Mobile Robot Navigation Method with Deep Reinforcement Learning
    Li, Juncheng
    Ran, Maopeng
    Wang, Han
    Xie, Lihua
    [J]. UNMANNED SYSTEMS, 2021, 9 (03) : 201 - 209
  • [9] CBNAV: Costmap Based Approach to Deep Reinforcement Learning Mobile Robot Navigation
    Tomasi Junior, Darci Luiz
    Todt, Eduardo
    [J]. 2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 324 - 329
  • [10] Sensor-based Mobile Robot Navigation via Deep Reinforcement Learning
    Han, Seungho-Ho
    Choi, Ho-Jin
    Benz, Philipp
    Loaiciga, Jorge
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 147 - 154