A novel mobile robot navigation method based on deep reinforcement learning

被引:30
|
作者
Quan, Hao [1 ,2 ]
Li, Yansheng [1 ,2 ]
Zhang, Yi [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Res Ctr Intelligent Syst & Robot, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Adv Mfg Engn, Chongqing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; robot exploration; recurrent neural network; DDQN;
D O I
10.1177/1729881420921672
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Navigation method for mobile robot based on hierarchical deep reinforcement learning
    Wang, Tong
    Li, Ao
    Song, Hai-Luo
    Liu, Wei
    Wang, Ming-Hui
    [J]. Kongzhi yu Juece/Control and Decision, 2022, 37 (11): : 2799 - 2807
  • [2] Mobile Robot Navigation based on Deep Reinforcement Learning
    Ruan, Xiaogang
    Ren, Dingqi
    Zhu, Xiaoqing
    Huang, Jing
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 6174 - 6178
  • [3] A Behavior-Based Mobile Robot Navigation Method with Deep Reinforcement Learning
    Li, Juncheng
    Ran, Maopeng
    Wang, Han
    Xie, Lihua
    [J]. UNMANNED SYSTEMS, 2021, 9 (03) : 201 - 209
  • [4] Deep Reinforcement Learning Based Mobile Robot Navigation: A Review
    Zhu, Kai
    Zhang, Tao
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 674 - 691
  • [5] Deep Reinforcement Learning for Mobile Robot Navigation
    Gromniak, Martin
    Stenzel, Jonas
    [J]. 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), 2019, : 68 - 73
  • [6] Deep Reinforcement Learning Based Mobile Robot Navigation:A Review
    Kai Zhu
    Tao Zhang
    [J]. Tsinghua Science and Technology, 2021, 26 (05) : 674 - 691
  • [7] Deep Reinforcement Learning Based Mobile Robot Navigation in Crowd Environments
    Yang, Guang
    Guo, Yi
    [J]. 2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 513 - 519
  • [8] Mobile Robot Navigation Using Deep Reinforcement Learning
    Lee, Min-Fan Ricky
    Yusuf, Sharfiden Hassen
    [J]. PROCESSES, 2022, 10 (12)
  • [9] CBNAV: Costmap Based Approach to Deep Reinforcement Learning Mobile Robot Navigation
    Tomasi Junior, Darci Luiz
    Todt, Eduardo
    [J]. 2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 324 - 329
  • [10] Sensor-based Mobile Robot Navigation via Deep Reinforcement Learning
    Han, Seungho-Ho
    Choi, Ho-Jin
    Benz, Philipp
    Loaiciga, Jorge
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 147 - 154