In Vivo Application of RNA Interference: From Functional Genomics to Therapeutics

被引:150
|
作者
Lu, Patrick Y. [1 ]
Xie, Frank [1 ]
Woodle, Martin C. [1 ]
机构
[1] Intradigm Corp, Rockville, MD 20852 USA
关键词
D O I
10.1016/S0065-2660(05)54006-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNAi has rapidly become a powerful tool for drug target discovery and validation in cell culture, and now has largely displaced efforts with antisense and ribozymes. Consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease models and human therapeutics. Studies on RNAi have resulted in two basic methods for its use for gene selective inhibition: 1) cytoplasmic delivery of short dsRNA oligonucleotides (siRNA), which mimics an active intermediate of an endogenous RNAi mechanism and 2) nuclear delivery of gene expression cassettes that express a short hairpin RNA (shRNA), which mimics the micro interfering RNA (miRNA) active intermediate of a different endogenous RNAi mechanism. Non-viral gene delivery systems are a diverse collection of technologies that are applicable to both of these forms of RNAi. Importantly, unlike antisense and ribozyme systems, a remarkable trait of siRNA is a lack of dependence on chemical modifications blocking enzymatic degradation, although chemical protection methods developed for the earlier systems are being incorporated into siRNA and are generally compatible with non-viral delivery systems. The use of siRNA is emerging more rapidly than for shRNA, in part due to the increased effort required to construct shRNA expression systems before selection of active sequences and verification of biological activity are obtained. In contrast, screens of many siRNA sequences can be accomplished rapidly using synthetic oligos. It is not surprising that the use of siRNA in vivo is also emerging first. Initial in vivo studies have been reported for both viral and non-viral delivery but viral delivery is limited to shRNA. This review describes the emerging in vivo application of non-viral delivery systems for RNAi for functional genomics, which will provide a foundation for further development of RNAi therapeutics. Of interest is the rapid adaptation of ligand-targeted plasmid-based nano-particles for RNAi agents. These systems are growing in capabilities and beginning to pose a serious rival to viral vector based gene delivery. The activity of siRNA in the cytoplasm may lower the hurdle and thereby accelerate the successful development of therapeutics based on targeted non-viral delivery systems. (C) 2005, Elsevier Inc.
引用
收藏
页码:117 / 142
页数:26
相关论文
共 50 条
  • [31] RNA therapeutics: beyond RNA interference and antisense oligonucleotides
    Ryszard Kole
    Adrian R. Krainer
    Sidney Altman
    Nature Reviews Drug Discovery, 2012, 11 : 125 - 140
  • [32] Pharmacogenomics: Translating functional genomics into rational therapeutics
    Evans, WE
    Relling, MV
    SCIENCE, 1999, 286 (5439) : 487 - 491
  • [33] siRNAs: Applications in functional genomics and potential as therapeutics
    Dorsett, Y
    Tuschl, T
    NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) : 318 - 329
  • [34] Pharmacogenomics: Translating functional genomics into rationale therapeutics
    Evans, WE
    FASEB JOURNAL, 2000, 14 (08): : A1307 - A1307
  • [35] siRNAs: applications in functional genomics and potential as therapeutics
    Yair Dorsett
    Thomas Tuschl
    Nature Reviews Drug Discovery, 2004, 3 : 318 - 329
  • [36] The functional genomics of noncoding RNA
    Mattick, JS
    SCIENCE, 2005, 309 (5740) : 1527 - 1528
  • [37] RNA interference: from gene silencing to gene-specific therapeutics
    Leung, RKM
    Whittaker, PA
    PHARMACOLOGY & THERAPEUTICS, 2005, 107 (02) : 222 - 239
  • [38] RNA interference in Trypanosoma brucei:: a high-throughput engine for functional genomics in trypanosomatids?
    Balana-Fouce, Rafael
    Reguera, Rosa M.
    TRENDS IN PARASITOLOGY, 2007, 23 (08) : 348 - 351
  • [39] Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions
    Chaudhary, Divya
    Jeena, Anand Singh
    Rohit
    Gaur, Sonali
    Raj, Rishi
    Mishra, Shefali
    Kajal
    Gupta, Om Prakash
    Meena, Mintu Ram
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2024, 196 (09) : 5681 - 5710
  • [40] RNA interference: New therapeutics in allergic diseases
    Lee, Chen-Chen
    Chiang, Bor-Luen
    CURRENT GENE THERAPY, 2008, 8 (04) : 236 - 246