Single particle Brownian motion with solid friction

被引:7
|
作者
Das, Prasenjit [1 ]
Puri, Sanjay [1 ]
Schwartz, Moshe [2 ,3 ]
机构
[1] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[2] Tel Aviv Univ, Beverly & Raymond Sackler Sch Phys & Astron, IL-69934 Ramat Aviv, Israel
[3] Holon Inst Technol, Fac Engn, Golomb 52, IL-5810201 Holon, Israel
来源
EUROPEAN PHYSICAL JOURNAL E | 2017年 / 40卷 / 06期
关键词
DRY FRICTION; GRANULAR FLOW; STICK-SLIP; LANGEVIN EQUATION; COULOMB-FRICTION; DENSITY WAVES; VIBRATIONS; SIMULATION; DYNAMICS; MODELS;
D O I
10.1140/epje/i2017-11549-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the Brownian dynamics of a solid particle on a vibrating solid surface. Phenomenologically, the interaction between the two solid surfaces is modeled by solid friction, and the Gaussian white noise models the vibration of the solid surface. The solid friction force is proportional to the sign of relative velocity. We derive the Fokker-Planck (FP) equation for the time-dependent probability distribution to find the particle at a given location. We calculate analytically the steady state velocity distribution function, mean-square velocity and diffusion coefficient in d-dimensions. We present a generic method of calculating the autocorrelations in d-dimensions. This results in one dimension in an exact evaluation of the steady state velocity autocorrelation. In higher dimensions our exact general expression enables the analytic evaluation of the autocorrelation to any required approximation. We present approximate analytic expressions in two and three dimensions. Next, we numerically calculate the mean-square velocity and steady state velocity autocorrelation function up to d = 3. Our numerical results are in good agreement with the analytically obtained results.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] BROWNIAN-MOTION WITH NON-LINEAR FRICTION
    HERMANS, JJ
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1979, 71 (02) : 427 - 430
  • [32] Brownian motion and correlation in particle image velocimetry
    Olsen, MG
    Adrian, RJ
    [J]. OPTICS AND LASER TECHNOLOGY, 2000, 32 (7-8): : 621 - 627
  • [33] Brownian motion - Absolute negative particle mobility
    Ros, A
    Eichhorn, R
    Regtmeier, J
    Duong, TT
    Reimann, P
    Anselmetti, D
    [J]. NATURE, 2005, 436 (7053) : 928 - 928
  • [34] BROWNIAN-MOTION OF A PARTICLE LEVITATED IN VACUUM
    HINKLE, LD
    KENDALL, BRF
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1992, 10 (01): : 243 - 247
  • [35] Lattice Boltzmann model for particle Brownian motion
    Department of Mechanics, Zhejiang University, Hangzhou 310027, China
    不详
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban), 2009, 8 (1438-1442):
  • [36] MICROSCOPIC PREPARATION AND MACROSCOPIC MOTION OF A BROWNIAN PARTICLE
    BEZ, W
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 39 (04): : 319 - 325
  • [37] BROWNIAN PARTICLE MOTION IN A SYSTEM WITH ABSORBING BOUNDARIES
    USENKO, AS
    ZAGORODNY, AG
    [J]. MOLECULAR PHYSICS, 1987, 61 (05) : 1213 - 1246
  • [38] Branching Brownian motion conditioned on particle numbers
    La, Kabir Ramo
    Majumdar, Satya N.
    Schehr, Gregory
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 74 : 79 - 88
  • [39] Motion of a Brownian particle in the presence of reactive boundaries
    Pal, Arnab
    Perez Castillo, Isaac
    Kundu, Anupam
    [J]. PHYSICAL REVIEW E, 2019, 100 (04)
  • [40] BROWNIAN MOTION OF A PARTICLE IN A HARMONIC OSCILLATOR FIELD
    TERHAAR, D
    KOCINSKI, J
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES B-PHYSICAL SCIENCES, 1972, 75 (01): : 1 - &