Single particle Brownian motion with solid friction

被引:7
|
作者
Das, Prasenjit [1 ]
Puri, Sanjay [1 ]
Schwartz, Moshe [2 ,3 ]
机构
[1] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[2] Tel Aviv Univ, Beverly & Raymond Sackler Sch Phys & Astron, IL-69934 Ramat Aviv, Israel
[3] Holon Inst Technol, Fac Engn, Golomb 52, IL-5810201 Holon, Israel
来源
EUROPEAN PHYSICAL JOURNAL E | 2017年 / 40卷 / 06期
关键词
DRY FRICTION; GRANULAR FLOW; STICK-SLIP; LANGEVIN EQUATION; COULOMB-FRICTION; DENSITY WAVES; VIBRATIONS; SIMULATION; DYNAMICS; MODELS;
D O I
10.1140/epje/i2017-11549-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the Brownian dynamics of a solid particle on a vibrating solid surface. Phenomenologically, the interaction between the two solid surfaces is modeled by solid friction, and the Gaussian white noise models the vibration of the solid surface. The solid friction force is proportional to the sign of relative velocity. We derive the Fokker-Planck (FP) equation for the time-dependent probability distribution to find the particle at a given location. We calculate analytically the steady state velocity distribution function, mean-square velocity and diffusion coefficient in d-dimensions. We present a generic method of calculating the autocorrelations in d-dimensions. This results in one dimension in an exact evaluation of the steady state velocity autocorrelation. In higher dimensions our exact general expression enables the analytic evaluation of the autocorrelation to any required approximation. We present approximate analytic expressions in two and three dimensions. Next, we numerically calculate the mean-square velocity and steady state velocity autocorrelation function up to d = 3. Our numerical results are in good agreement with the analytically obtained results.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Single particle Brownian motion with solid friction
    Prasenjit Das
    Sanjay Puri
    Moshe Schwartz
    [J]. The European Physical Journal E, 2017, 40
  • [2] Analysis on the Brownian motion of a single particle
    Furth, R
    [J]. ANNALEN DER PHYSIK, 1917, 53 (11) : 177 - 213
  • [3] Brownian motion with time-dependent friction and single-particle dynamics in liquids
    Lad, Kirit N.
    Patel, Margi K.
    Pratap, Arun
    [J]. PHYSICAL REVIEW E, 2022, 105 (06)
  • [4] Exact power spectra of Brownian motion with solid friction
    Touchette, Hugo
    Prellberg, Thomas
    Just, Wolfram
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (39)
  • [5] Comment on "Brownian motion with time-dependent friction and single-particle dynamics in liquids"
    Lisy, Vladimir
    Tothova, Jana
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [6] Reply to "Comment on 'Brownian motion with time-dependent friction and single-particle dynamics in liquids'"
    Lad, Kirit N.
    Patel, Margi K.
    Pratap, Arun
    Pandya, Jignesh N.
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [7] Brownian motion with dry friction
    de Gennes, PG
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (5-6) : 953 - 962
  • [8] Brownian motion of a quantum particle
    Kadomtsev, BB
    Kadomtsev, MB
    [J]. PHYSICS LETTERS A, 1997, 231 (1-2) : 52 - 60
  • [9] Ballistic motion of a Brownian particle
    Durian, Douglas J.
    [J]. PHYSICS TODAY, 2015, 68 (06) : 9 - 11
  • [10] On Brownian motion of melting particle
    Ivanov, O. O.
    Golubiatnikov, A. N.
    [J]. CONFERENCE OF YOUNG SCIENTISTS IN MECHANICS, 2018, 1129