Relativistic quasiparticle random phase approximation in deformed nuclei

被引:13
|
作者
Arteaga, D. Pena [1 ]
Ring, P. [1 ]
机构
[1] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
关键词
deformed relativistic quasiparticle RPA; RQRPA; deformed; axial symmetry;
D O I
10.1016/j.ppnp.2006.12.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The first results of the solution of the Relativistic Quasiparticle Random Phase Approximation (QRPA) in axial symmetry are presented. Three different relativistic density functionals have been implemented in a fully self-consistent fashion. Example applications for E1 and M1 excitations in Ne-20, Ne-26 and Gd-160 are studied. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 316
页数:3
相关论文
共 50 条
  • [21] Rigorous spectral representation of relativistic random phase approximation for finite nuclei
    李宁
    姚海波
    陈曦
    吴式枢
    中国物理C, 2010, (12) : 1830 - 1835
  • [22] A consistent approach in the relativistic random phase approximation for stable and exotic nuclei
    Ma, ZY
    Cao, LG
    Van Giai, N
    Wandelt, A
    Vretenar, D
    Ping, P
    NUCLEAR PHYSICS IN THE 21ST CENTURY, 2002, 610 : 890 - 894
  • [23] Relativistic quasiparticle random-phase approximation calculation of total muon capture rates
    Marketin, T.
    Paar, N.
    Niksic, T.
    Vretenar, D.
    PHYSICAL REVIEW C, 2009, 79 (05):
  • [24] Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction
    De Donno, V.
    Co', G.
    Anguiano, M.
    Lallena, A. M.
    PHYSICAL REVIEW C, 2017, 95 (05)
  • [25] Unified description of 21+ states within the deformed quasiparticle random-phase approximation
    Delion, D. S.
    Suhonen, J.
    PHYSICAL REVIEW C, 2013, 87 (02):
  • [26] Relativistic quasiparticle random-phase approximation description of isoscalar compression modes in open-shell nuclei in the A ≈ 60 mass region
    Paar, N.
    Vretenar, D.
    Niksic, T.
    Ring, P.
    PHYSICAL REVIEW C, 2006, 74 (03):
  • [27] Nonlinear Higher Quasiparticle Random Phase Approximation
    Smetana, Adam
    Simkovic, Fedor
    Stefanik, Dusan
    Krivoruchenko, Mikhail
    WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX'17), 2017, 1894
  • [28] Extension of the renormalized quasiparticle random phase approximation
    Kaminski, WA
    Gozdz, A
    Zareba, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (02) : 191 - 195
  • [29] Collective multipole excitations of exotic nuclei in relativistic continuum random phase approximation
    杨丁
    曹李刚
    马中玉
    ChinesePhysicsC, 2013, 37 (12) : 38 - 43
  • [30] ISOSCALAR GIANT MONOPOLE STATES OF FINITE NUCLEI IN THE RELATIVISTIC RANDOM PHASE APPROXIMATION
    MARUYAMA, T
    PHYSICS LETTERS B, 1990, 245 (3-4) : 325 - 328