Guided Visual Exploration of Relations in Data Sets

被引:0
|
作者
Puolamaki, Kai [1 ]
Oikarinen, Emilia [2 ]
Henelius, Andreas [2 ,3 ]
机构
[1] Univ Helsinki, Inst Atmospher & Earth Syst Res, Dept Comp Sci, POB 68, FI-00014 Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, POB 68, FI-00014 Helsinki, Finland
[3] OP Financial Grp, Gebhardinaukio 1, FI-00510 Helsinki, Finland
基金
芬兰科学院;
关键词
exploratory data analysis; visual exploration; dimensionality reduction; constrained randomisation; iterative data mining;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient explorative data analysis systems must take into account both what a user knows and wants to know. This paper proposes a principled framework for interactive visual exploration of relations in data, through views most informative given the user's current knowledge and objectives. The user can input pre-existing knowledge of relations in the data and also formulate specific exploration interests, which are then taken into account in the exploration. The idea is to steer the exploration process towards the interests of the user, instead of showing uninteresting or already known relations. The user's knowledge is modelled by a distribution over data sets parametrised by subsets of rows and columns of data, called tile constraints. We provide a computationally efficient implementation of this concept based on constrained randomisation. Furthermore, we describe a novel dimensionality reduction method for finding the views most informative to the user, which at the limit of no background knowledge and with generic objectives reduces to PCA. We show that the method is suitable for interactive use and is robust to noise, outperforms standard projection pursuit visualisation methods, and gives understandable and useful results in analysis of real-world data. We provide an open-source implementation of the framework.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Guided visual exploration of genomic stratifications in cancer
    Marc Streit
    Alexander Lex
    Samuel Gratzl
    Christian Partl
    Dieter Schmalstieg
    Hanspeter Pfister
    Peter J Park
    Nils Gehlenborg
    Nature Methods, 2014, 11 : 884 - 885
  • [22] Visual exploration of microbiome data
    Kuntal, Bhusan K.
    Mande, Sharmila S.
    JOURNAL OF BIOSCIENCES, 2019, 44 (05)
  • [23] Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality
    Faludi, Balazs
    Zoller, Esther I.
    Gerig, Nicolas
    Zam, Azhar
    Rauter, Georg
    Cattin, Philippe C.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT V, 2019, 11768 : 29 - 37
  • [24] Prefetching for visual data exploration
    Doshi, PR
    Rundensteiner, EA
    Ward, MO
    EIGHTH INTERNATIONAL CONFERENCE ON DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2003, : 195 - 202
  • [25] Visual exploration of genomic data
    Vlachos, Michail
    Taneri, Bahar
    Keogh, Eamonn
    Yu, Philip S.
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007, PROCEEDINGS, 2007, 4702 : 613 - +
  • [26] Visual exploration of RDF data
    Dokulil, Jiri
    Katreniakova, Jana
    SOFSEM 2008: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2008, 4910 : 672 - +
  • [27] Safe Visual Data Exploration
    Zhao, Zheguang
    Zgraggen, Emanuel
    De Stefani, Lorenzo
    Binnig, Carsten
    Upfal, Eli
    Kraska, Tim
    SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2017, : 1671 - 1674
  • [28] Visual exploration of microbiome data
    Bhusan K. Kuntal
    Sharmila S. Mande
    Journal of Biosciences, 2019, 44
  • [29] From visual data exploration to visual data mining: A survey
    de Oliveira, MCF
    Levkowitz, H
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9 (03) : 378 - 394
  • [30] Set Streams: Visual Exploration of Dynamic Overlapping Sets
    Agarwal, Shivam
    Beck, Fabian
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 383 - 391