Blind per tone equalization of multilevel signals using support vector machines for OFDM in wireless communication

被引:5
|
作者
Naeeni, Babak Haji Bagher [1 ]
Amindavar, Hamidreza [2 ]
Bakhshi, Hamidreza [3 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Sci & Res Branch, Tehran, Iran
[2] Amir Kabir Univ Technol, Dept Elect Engn, Tehran, Iran
[3] Shahed Univ, Dept Elect Engn, Tehran, Iran
关键词
Constant modulus algorithm (CMA); Multi-modules algorithm (MMA); Support vector machine (SVM); Orthogonal frequencey division multiplexing (OFDM); Metropolitan area network (MAN);
D O I
10.1016/j.aeue.2008.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an efficient support vector machine (SVM)-based blind per tone equalization for OFDM systems. Blind per tone equalization using constant modulus algorithm (CMA) and multi-modules algorithm (MMA) are used as the comparison benchmark. The SVM-based cost function utilizes a CMA-like error function and the solution is obtained by means of an iterative re-weighted least squares algorithm (IRWLS). Moreover, like CMA, the error function allows to extend the method to multilevel modulations. In terms of bit error rate (BER), simulation experiments show that the blind per tone equalization using SVM performs better than blind per tone equalization using CMA and MMA. (C) 2009 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:186 / 190
页数:5
相关论文
共 50 条
  • [1] Blind equalization of constant modulus signals using support vector machines
    Santamaría, I
    Pantaleón, C
    Vielva, L
    Ibáñez, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (06) : 1773 - 1782
  • [2] Blind Equalization of Multilevel Signals via Support Vector Regression
    Sun, Chao
    Yang, Ling
    Chen, Li
    Zhang, Jiliang
    Yang, Rong
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 28 - 33
  • [3] Unsupervised Support Vector Machines for Nonlinear Blind Equalization in CO-OFDM
    Giacoumidis, E.
    Tsokanos, A.
    Ghanbarisabagh, M.
    Mhatli, S.
    Barry, L. P.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (12) : 1091 - 1094
  • [4] Secure Wireless Communication Using Support Vector Machines
    Hoang, Tiep M.
    Duong, Trung Q.
    Lambotharan, Sangarapillai
    2019 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2019,
  • [6] Adaptive blind equalization for MIMO-OFDM wireless communication systems
    Du, J
    Peng, QC
    Li, YB
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 1086 - 1090
  • [7] Blind Equalization Using v- Support Vector Regressor for Constant Modulus Signals
    Liu, Feng
    An, Hu-cheng
    Li, Jia-ming
    Ge, Lin-dong
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 161 - 164
  • [8] Blind equalization of constant modulus signals via support vector regression
    Santamaría, I
    Ibáñez, J
    Vielva, L
    Pantaleón, C
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SPEECH II; INDUSTRY TECHNOLOGY TRACKS; DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS; NEURAL NETWORKS FOR SIGNAL PROCESSING, 2003, : 737 - 740
  • [9] New Adaptive Blind Equalization Algorithm to Multipath Correction of Wireless Communication Signals
    Sun, Lijun
    Zhao, Hailan
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 1112 - +
  • [10] Adaptive blind channel identification and equalization for OFDM-MIMO wireless communication systems
    Du, J
    Peng, QC
    Zhang, HY
    PIMRC 2003: 14TH IEEE 2003 INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS PROCEEDINGS, VOLS 1-3 2003, 2003, : 2078 - 2082