Blind equalization of constant modulus signals via support vector regression

被引:0
|
作者
Santamaría, I [1 ]
Ibáñez, J [1 ]
Vielva, L [1 ]
Pantaleón, C [1 ]
机构
[1] Univ Cantabria, Dept Commun Engn, DICOM, Santander 39005, Spain
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper the problem of blind equalization of constant modulus (CM) signals is formulated within the support vector (SV) regression framework. The quadratic inequalities derived from the CM property are transformed into linear ones, thus yielding a quadratic programming (QP) problem. Then an iterative reweighted procedure is proposed to blindly restore the CM property. The technique can be generalized to nonlinear blind equalization using kernel functions. We present simulation examples showing that linear and nonlinear blind SV equalizers offer better performance than cumulant-based techniques, mainly in applications when only a small number of data samples is available, such as in packet-based transmission over fast fading channels.
引用
收藏
页码:737 / 740
页数:4
相关论文
共 50 条
  • [1] Blind equalization of constant modulus signals using support vector machines
    Santamaría, I
    Pantaleón, C
    Vielva, L
    Ibáñez, J
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (06) : 1773 - 1782
  • [2] Blind Equalization of Multilevel Signals via Support Vector Regression
    Sun, Chao
    Yang, Ling
    Chen, Li
    Zhang, Jiliang
    Yang, Rong
    [J]. PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 28 - 33
  • [3] Blind Equalization Using v- Support Vector Regressor for Constant Modulus Signals
    Liu, Feng
    An, Hu-cheng
    Li, Jia-ming
    Ge, Lin-dong
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 161 - 164
  • [4] Blind equalization of Constant Modulus signals via restricted convex optimization
    Marcic, B
    Luo, ZQ
    Davidson, TN
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 2169 - 2172
  • [5] Blind constant modulus equalization via convex optimization
    Maricic, B
    Luo, ZQ
    Davidson, TN
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (03) : 805 - 818
  • [6] Blind equalization using the support vector regression via PDF error function
    Wang, Yang
    Yang, Ling
    Wang, Fang
    Bai, Lu
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, : 212 - 216
  • [7] Blind Equalization of Constant Modulus Signals Based on Gaussian Process for Classification
    Zhifei Sun
    Tinghuan Chen
    You Tong
    Meng Zhang
    [J]. Wireless Personal Communications, 2017, 97 : 6005 - 6018
  • [8] Blind Equalization of Constant Modulus Signals Based on Gaussian Process for Classification
    Sun, Zhifei
    Chen, Tinghuan
    Tong, You
    Zhang, Meng
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2017, 97 (04) : 6005 - 6018
  • [9] Blind equalization of constant modulus signals using an adaptive observer approach
    White, LB
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (02) : 134 - 136
  • [10] Blind equalization algorithm based on complex support vector regression
    Yang L.
    Chen L.
    Zhao B.
    Zhang G.
    Li Y.
    [J]. Tongxin Xuebao/Journal on Communications, 2019, 40 (10): : 180 - 188