Backward Asymptotics in S-Unimodal Maps

被引:2
|
作者
De Leo, Roberto [1 ]
机构
[1] Howard Univ, Dept Math, 2400 6th St NW, Washington, DC 20059 USA
来源
基金
美国国家科学基金会;
关键词
S-unimodal map; backward dynamics; s alpha-limit; graph of a dynamical system; LIMIT-SETS; DYNAMICS; ORBITS;
D O I
10.1142/S0218127422300130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While the forward trajectory of a point in a discrete dynamical system is always unique, in general, a point can have infinitely many backward trajectories. The union of the limit points of all backward trajectories through x was called by Hero the "special alpha-limit" (s alpha-limit for short) of x. In this article, we show that there is a hierarchy of s alpha-limits of points under iterations of a S-unimodal map: the size of the s alpha-limit of a point increases monotonically as the point gets closer and closer to the attractor. The s alpha-limit of any point of the attractor is the whole nonwandering set. This hierarchy reflects the structure of the graph of a S-unimodal map recently introduced jointly by Jim Yorke and the present author.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Local Critical Perturbations of Unimodal Maps
    Blokh, Alexander
    Misiurewicz, Michal
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) : 765 - 776
  • [42] Universal visibility patterns of unimodal maps
    Nuno, Juan Carlos
    Munoz, Francisco J.
    CHAOS, 2020, 30 (06)
  • [43] Countable limit sets of unimodal maps
    Inaba, T.
    Kano, Y.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (03) : 319 - 328
  • [44] Generalized β-transformations and the entropy of unimodal maps
    Thompson, Daniel J.
    COMMENTARII MATHEMATICI HELVETICI, 2017, 92 (04) : 777 - 800
  • [45] Asymmetric unimodal maps at the edge of chaos
    Tirnakli, U
    Tsallis, C
    Lyra, ML
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [46] Return time statistics for unimodal maps
    Bruin, H
    Vaienti, S
    FUNDAMENTA MATHEMATICAE, 2003, 176 (01) : 77 - 94
  • [47] ENTROPY AND ITINERARIES OF UNIMODAL MAPS OF AN INTERVAL
    MARCUARD, JC
    SCHMITT, B
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1983, 19 (04): : 351 - 367
  • [48] Local Critical Perturbations of Unimodal Maps
    Alexander Blokh
    Michał Misiurewicz
    Communications in Mathematical Physics, 2009, 289
  • [49] A note on chaotic unimodal maps and applications
    Zhou, C. T.
    He, X. T.
    Yu, M. Y.
    Chew, L. Y.
    Wang, X. G.
    CHAOS, 2006, 16 (03)
  • [50] On the application of DFA to the analysis of unimodal maps
    Sozanski, M
    Zebrowski, J
    ACTA PHYSICA POLONICA B, 2005, 36 (05): : 1803 - 1822