Detecting Many-Body Bell Nonlocality by Solving Ising Models

被引:13
|
作者
Frerot, Irenee [1 ,2 ]
Roscilde, Tommaso [3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Barcelona 08860, Spain
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Univ Claude Bernard, Univ Lyon, Lab Phys, Ens Lyon,CNRS, F-69342 Lyon, France
关键词
QUANTUM; SUSCEPTIBILITY; ENTANGLEMENT; VIOLATION;
D O I
10.1103/PhysRevLett.126.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bell nonlocality represents the ultimate consequence of quantum entanglement, fundamentally undermining the classical tenet that spatially separated degrees of freedom possess objective attributes independently of the act of their measurement. Despite its importance, probing Bell nonlocality in many-body systems is considered to be a formidable challenge, with a computational cost scaling exponentially with system size. Here we propose and validate an efficient variational scheme, based on the solution of inverse classical lsing problems, which in polynomial time can probe whether an arbitrary set of quantum data is compatible with a local theory; and, if not, it delivers the many-body Bell inequality most strongly violated by the quantum data. We use our approach to unveil new many-body Bell inequalities, violated by suitable measurements on paradigmatic quantum states (the low-energy states of Heisenberg antiferromagnets), paving the way to systematic Bell tests in the many-body realm.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Many-Body Localization Transition in the Heisenberg Ising Chain
    Yining Geng
    Taotao Hu
    Kang Xue
    Haoyue Li
    Hui Zhao
    Xiaodan Li
    Hang Ren
    International Journal of Theoretical Physics, 2020, 59 : 1330 - 1337
  • [22] Bell Correlations in a Many-Body System with Finite Statistics
    Wagner, Sebastian
    Schmied, Roman
    Fadel, Matteo
    Treutlein, Philipp
    Sangouard, Nicolas
    Bancal, Jean-Daniel
    PHYSICAL REVIEW LETTERS, 2017, 119 (17)
  • [23] Many-Body Models for Molecular Nanomagnets
    Chiesa, A.
    Carretta, S.
    Santini, P.
    Amoretti, G.
    Pavarini, E.
    PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [24] Perfect thermal rectification in a many-body quantum Ising model
    Pereira, Emmanuel
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [25] MANY-BODY FORCES AND THE MANY-BODY PROBLEM
    POLKINGHORNE, JC
    NUCLEAR PHYSICS, 1957, 3 (01): : 94 - 96
  • [26] Detecting a many-body mobility edge with quantum quenches
    Naldesi, P.
    Ercolessi, E.
    Roscilde, T.
    SCIPOST PHYSICS, 2016, 1 (01):
  • [27] Wavefunction matching for solving quantum many-body problems
    Elhatisari, Serdar
    Bovermann, Lukas
    Ma, Yuan-Zhuo
    Epelbaum, Evgeny
    Frame, Dillon
    Hildenbrand, Fabian
    Kim, Myungkuk
    Kim, Youngman
    Krebs, Hermann
    Laehde, Timo A.
    Lee, Dean
    Li, Ning
    Lu, Bing-Nan
    Meissner, Ulf-G.
    Rupak, Gautam
    Shen, Shihang
    Song, Young-Ho
    Stellin, Gianluca
    NATURE, 2024, 630 (8015) : 59 - 63
  • [28] Wavefunction matching for solving quantum many-body problems
    Elhatisari, Serdar
    Bovermann, Lukas
    Ma, Yuan-Zhuo
    Epelbaum, Evgeny
    Frame, Dillon
    Hildenbrand, Fabian
    Kim, Myungkuk
    Kim, Youngman
    Krebs, Hermann
    Laehde, Timo A.
    Lee, Dean
    Li, Ning
    Lu, Bing-Nan
    Meissner, Ulf-G.
    Rupak, Gautam
    Shen, Shihang
    Song, Young-Ho
    Stellin, Gianluca
    NATURE, 2024, 630 (8015)
  • [29] A NEW METHOD OF SOLVING THE MANY-BODY SCHRODINGER EQUATION
    Tapilin, V. M.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 58 (01) : 1 - 8
  • [30] SOLVABLE AND/OR INTEGRABLE MANY-BODY MODELS ON A CIRCLE
    Bihun, Oksana
    Calogero, Francesco
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2013, 30 : 1 - 18