Detecting Many-Body Bell Nonlocality by Solving Ising Models

被引:13
|
作者
Frerot, Irenee [1 ,2 ]
Roscilde, Tommaso [3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Barcelona 08860, Spain
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Univ Claude Bernard, Univ Lyon, Lab Phys, Ens Lyon,CNRS, F-69342 Lyon, France
关键词
QUANTUM; SUSCEPTIBILITY; ENTANGLEMENT; VIOLATION;
D O I
10.1103/PhysRevLett.126.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bell nonlocality represents the ultimate consequence of quantum entanglement, fundamentally undermining the classical tenet that spatially separated degrees of freedom possess objective attributes independently of the act of their measurement. Despite its importance, probing Bell nonlocality in many-body systems is considered to be a formidable challenge, with a computational cost scaling exponentially with system size. Here we propose and validate an efficient variational scheme, based on the solution of inverse classical lsing problems, which in polynomial time can probe whether an arbitrary set of quantum data is compatible with a local theory; and, if not, it delivers the many-body Bell inequality most strongly violated by the quantum data. We use our approach to unveil new many-body Bell inequalities, violated by suitable measurements on paradigmatic quantum states (the low-energy states of Heisenberg antiferromagnets), paving the way to systematic Bell tests in the many-body realm.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] QUANTUM NONLOCALITY Detecting nonlocality in many-body quantum states
    Tura, J.
    Augusiak, R.
    Sainz, A. B.
    Vertesi, T.
    Lewenstein, M.
    Acin, A.
    SCIENCE, 2014, 344 (6189) : 1256 - 1258
  • [2] Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems
    Deng, Dong-Ling
    PHYSICAL REVIEW LETTERS, 2018, 120 (24)
  • [3] Bipartite nonlocality with a many-body system
    Oudot, Enky
    Bancal, Jean-Daniel
    Sekatski, Pavel
    Sangouard, Nicolas
    NEW JOURNAL OF PHYSICS, 2019, 21 (10):
  • [4] Energy as a Detector of Nonlocality of Many-Body Spin Systems
    Tura, J.
    De las Cuevas, G.
    Augusiak, R.
    Lewenstein, M.
    Acin, A.
    Cirac, J. I.
    PHYSICAL REVIEW X, 2017, 7 (02):
  • [5] Robustness of nonlocality in many-body open quantum systems
    Marconi, Carlo
    Riera-Campeny, Andreu
    Sanpera, Anna
    Aloy, Albert
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [6] Nonlocality and many-body effects in the optical properties of semiconductors
    Adolph, B
    Gavrilenko, VI
    Tenelsen, K
    Bechstedt, F
    DelSole, R
    PHYSICAL REVIEW B, 1996, 53 (15): : 9797 - 9808
  • [7] Many-body Bell inequalities for bosonic qubits
    Chwedenczuk, Jan
    SCIPOST PHYSICS CORE, 2022, 5 (02):
  • [8] Bell correlation depth in many-body systems
    Baccari, F.
    Tura, J.
    Fadel, M.
    Aloy, A.
    Bancal, J-D
    Sangouard, N.
    Lewenstein, M.
    Acin, A.
    Augusiak, R.
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [9] Many-body quantum sign structures as non-glassy Ising models
    Tom Westerhout
    Mikhail I. Katsnelson
    Andrey A. Bagrov
    Communications Physics, 6
  • [10] Topological and nematic ordered phases in many-body cluster-Ising models
    Giampaolo, S. M.
    Hiesmayr, B. C.
    PHYSICAL REVIEW A, 2015, 92 (01):