Intratumoral Heterogeneity of Glioblastoma Infiltration Revealed by Joint Histogram Analysis of Diffusion Tensor Imaging

被引:28
|
作者
Li, Chao [1 ,2 ]
Wang, Shuo [3 ]
Yan, Jiun-Lin [1 ,4 ,5 ]
Piper, Rory J. [1 ]
Liu, Hongxiang [6 ]
Torheim, Turid [7 ,8 ]
Kim, Hyunjin [7 ]
Zou, Jingjing [9 ]
Boonzaier, Natalie R. [1 ,10 ]
Sinha, Rohitashwa [1 ]
Matys, Tomasz [3 ,11 ]
Markowetz, Florian [7 ,8 ]
Price, Stephen J. [1 ,12 ]
机构
[1] Univ Cambridge, Cambridge Brain Tumor Imaging Lab, Dept Clin Neurosci, Div Neurosurg,Addenbrookes Hosp, Cambridge, England
[2] Shanghai Jiao Tong Univ, Sch Med, Shanghai Peoples Hosp 1, Dept Neurosurg, Shanghai, Peoples R China
[3] Univ Cambridge, Dept Radiol, Cambridge, England
[4] Chang Gung Mem Hosp, Dept Neurosurg, Keelung, Taiwan
[5] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[6] Addenbrookes Hosp, Mol Malignancy Lab, Hematol & Oncol Diagnost Serv, Cambridge, England
[7] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[8] CRUK & EPSRC Canc Imaging Ctr Cambridge & Manches, Cambridge, England
[9] Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge, England
[10] UCL, Dev Imaging & Biophys Sect, Inst Child Hlth, London, England
[11] Addenbrookes Hosp, Canc Trials Unit, Dept Oncol, Cambridge, England
[12] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Glioblastoma; Tumor infiltration; Magnetic resonance imaging; Survival; Diffusion tensor imaging; Heterogeneity; INTEGRATED GENOMIC ANALYSIS; GLIOMAS RESPONSE ASSESSMENT; ABNORMALITIES; TEMOZOLOMIDE; PHENOTYPE; MIGRATION;
D O I
10.1093/neuros/nyy388
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND: Glioblastoma is a heterogeneous disease characterized by its infiltrative growth, rendering complete resection impossible. Diffusion tensor imaging (DTI) shows potential in detecting tumor infiltration by reflecting microstructure disruption. OBJECTIVE: To explore the heterogeneity of glioblastoma infiltration using joint histogram analysis of DTI, to investigate the incremental prognostic value of infiltrative patterns over clinical factors, and to identify specific subregions for targeted therapy. METHODS: A total of 115 primary glioblastoma patients were prospectively recruited for surgery and preoperative magnetic resonance imaging. The joint histograms of decomposed anisotropic and isotropic components of DTI were constructed in both contrast-enhancing and nonenhancing tumor regions. Patient survival was analyzed with joint histogram features and relevant clinical factors. The incremental prognostic values of histogram features were assessed using receiver operating characteristic curve analysis. The correlation between the proportion of diffusion patterns and tumor progression rate was tested using Pearson correlation. RESULTS: We found that joint histogram features were associated with patient survival and improved survival model performance. Specifically, the proportion of nonenhancing tumor subregion with decreased isotropic diffusion and increased anisotropic diffusion was correlated with tumor progression rate (P = .010, r = 0.35), affected progression-free survival (hazard ratio = 1.08, P < .001), and overall survival (hazard ratio = 1.36, P < .001) in multivariate models. CONCLUSION: Joint histogram features of DTI showed incremental prognostic values over clinical factors for glioblastoma patients. The nonenhancing tumor subregion with decreased isotropic diffusion and increased anisotropic diffusion may indicate a more infiltrative habitat and potential treatment target.
引用
收藏
页码:524 / 534
页数:11
相关论文
共 50 条
  • [41] Intratumoral Heterogeneity of Fibrosarcoma Xenograft Models: Whole-Tumor Histogram Analysis of DWI and IVIM
    Fang, Shaobo
    Yang, Yanyu
    Tao, Juan
    Yin, Zhenzhen
    Liu, Yajie
    Duan, Zhiqing
    Liu, Wenyu
    Wang, Shaowu
    ACADEMIC RADIOLOGY, 2023, 30 (10) : 2299 - 2308
  • [42] Evolution of human language circuits revealed with comparative diffusion tensor imaging
    Rilling, James K.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2016, 159 : 269 - 269
  • [43] Diffusion tensor imaging for target volume definition in glioblastoma multiformeDiffusions-Tensor-Bildgebung zur Zielvolumendefinition beim Glioblastoma multiforme
    Jatta Berberat
    Jane McNamara
    Luca Remonda
    Stephan Bodis
    Susanne Rogers
    Strahlentherapie und Onkologie, 2014, 190 : 939 - 943
  • [44] Primary cerebral lymphoma and glioblastoma multiforme: Differences in diffusion characteristics evaluated with diffusion tensor imaging
    Toh, C. -H.
    Castillo, M.
    Wong, A. M. -C.
    Wei, K. -C.
    Wong, H. -F.
    Ng, S. -H.
    Wan, Y. -L.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2008, 29 (03) : 471 - 475
  • [45] Detection of tumour infiltration in axonal fibre bundles using Diffusion Tensor Imaging
    Schlüter, M
    Stieltjes, B
    Hahn, HK
    Rexilius, J
    Konrad-Verse, O
    Peitgen, HO
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2005, 1 (03): : 80 - 86
  • [46] Macrocerebellum: Volumetric and Diffusion Tensor Imaging Analysis
    Izbudak, Izlem
    Acer, Niyazi
    Poretti, Andrea
    Gumus, Kazim
    Zararsiz, Gokmen
    TURKISH NEUROSURGERY, 2015, 25 (06) : 948 - 953
  • [47] Diffusion tensor imaging analysis of sensory aphasia
    Zhang, Y
    Wang, Y
    Zhu, Y
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2005, 76 (04): : 613 - 613
  • [48] Diffusion Tensor Imaging Analysis for Psychiatric Disorders
    Shizukuishi, Takashi
    Abe, Osamu
    Aoki, Shigeki
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2013, 12 (03) : 153 - 159
  • [49] Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma
    Mohammad-Reza Nazem-Zadeh
    Sona Saksena
    Abbas Babajani-Fermi
    Quan Jiang
    Hamid Soltanian-Zadeh
    Mark Rosenblum
    Tom Mikkelsen
    Rajan Jain
    BMC Medical Imaging, 12
  • [50] On PTV definition for glioblastoma based on fiber tracking of diffusion tensor imaging data
    Witulla, Barbara
    Goerig, Nicole
    Putz, Florian
    Frey, Benjamin
    Engelhorn, Tobias
    Doerfler, Arnd
    Uder, Michael
    Fietkau, Rainer
    Bert, Christoph
    Laun, Frederik Bernd
    PLOS ONE, 2020, 15 (01):