Lp-Bounds for Pseudo-differential Operators on Graded Lie Groups

被引:0
|
作者
Cardona, Duvan [1 ]
Delgado, Julio [2 ]
Ruzhansky, Michael [1 ,3 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[2] Univ Valle, Dept Matemat, Cali, Colombia
[3] Queen Mary Univ London, Sch Math Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Pseudo-differential operator; Graded Lie group; Symbolic calculus; L-p-estimates; SPECTRAL MULTIPLIERS; FOURIER MULTIPLIERS; ALGEBRA; CALCULUS; THEOREM;
D O I
10.1007/s12220-021-00694-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we obtain sharp L-p-estimates for pseudo-differential operators on arbitrary graded Lie groups. The results are presented within the setting of the global symbolic calculus on graded Lie groups by using the Fourier analysis associated to every graded Lie group which extends the usual one due to Hormander on R-n. The main result extends the classical Fefferman's sharp theorem on the L-p-boundedness of pseudo-differential operators for Hormander classes on Rn to general graded Lie groups, also adding the borderline rho = delta case.
引用
收藏
页码:11603 / 11647
页数:45
相关论文
共 50 条