On Multilabel Classification and Ranking with Bandit Feedback

被引:0
|
作者
Gentile, Claudio [1 ]
Orabona, Francesco [2 ]
机构
[1] Univ Insubria, DiSTA, I-21100 Varese, Italy
[2] Toyota Technol Inst Chicago, Chicago, IL 60637 USA
关键词
contextual bandits; structured prediction; ranking; online learning; regret bounds; generalized linear; ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We show O(T-1/2 log T) regret bounds, which improve in several ways on the existing results. We test the effectiveness of our upper-confidence scheme by contrasting against full-information baselines on diverse real-world multilabel data sets, often obtaining comparable performance.
引用
收藏
页码:2451 / 2487
页数:37
相关论文
共 50 条
  • [31] Dataset Sampler for a Multilabel Classification Task
    Kok, Yong En
    Woodward, Simon
    Ozcan, Ender
    Torres Torres, Mercedes
    MOLECULAR INFORMATICS, 2022, 41 (12)
  • [32] Multilabel predictions with sets of probabilities: The Hamming and ranking loss cases
    Destercke, Sebastien
    PATTERN RECOGNITION, 2015, 48 (11) : 3757 - 3765
  • [33] Multilabel Text Classification of Scientific Abstract
    Srinivas, T. R.
    Rithvik, A. V. S.
    Mukherjee, Saswati
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 335 - 354
  • [34] Graded Multilabel Classification by Pairwise Comparisons
    Brinker, Christian
    Mencia, Eneldo Loza
    Fuernkranz, Johannes
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 731 - 736
  • [35] Multilabel classification rule with performance constraints
    Grall-Maes, Edith
    Beauseroy, Pierre
    Bounsiar, Abdenour
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3235 - 3238
  • [36] Multilabel Classification with R Package mlr
    Probst, Philipp
    Au, Quay
    Casalicchio, Giuseppe
    Stachl, Clemens
    Bischl, Bernd
    R JOURNAL, 2017, 9 (01): : 352 - 369
  • [37] Improved Multilabel Classification with Neural Networks
    Grodzicki, Rafal
    Mandziuk, Jacek
    Wang, Lipo
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS, 2008, 5199 : 409 - +
  • [38] Vector Optimization with Stochastic Bandit Feedback
    Ararat, Cagin
    Tekin, Cem
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [39] Binary relevance efficacy for multilabel classification
    Luaces, Oscar
    Diez, Jorge
    Barranquero, Jose
    Jose del Coz, Juan
    Bahamonde, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2012, 1 (04) : 303 - 313
  • [40] Uncertainty quantification for multilabel text classification
    Chen, Wenshi
    Zhang, Bowen
    Lu, Mingyu
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (06)