Research on the Detection Method of Structural Variation based on Next-Generation Sequencing Data

被引:0
|
作者
Yang, Hai [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Qingdao 266237, Shandong, Peoples R China
关键词
detection method; structural variation; Next-Generation Sequencing; high-throughput sequencing; evaluating method;
D O I
10.23977/meet.2019.93724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection method of structural variation is one of the most important research field of bioinformatics. In this paper, next-generation sequencing and high-throughput sequencing technoloy are introduced firstly. Next, the types of genome structural variation such as insertion, deletion, duplication, copy-number variant, inversion and translocation are elaborated. Thirdly, four main detection methods of SV are illustrated in detail including paired-end, read-depth, split-read and assembly. Finally, this paper propose several parameters and a evaluating method of structural variation detection.
引用
收藏
页码:160 / 164
页数:5
相关论文
共 50 条
  • [31] Consensus Rules in Variant Detection from Next-Generation Sequencing Data
    Jia, Peilin
    Li, Fei
    Xia, Jufeng
    Chen, Haiquan
    Ji, Hongbin
    Pao, William
    Zhao, Zhongming
    PLOS ONE, 2012, 7 (06):
  • [32] Detection of mutations in microsatellite region from next-generation sequencing data
    Fujimoto, Akihiro
    GENES & GENETIC SYSTEMS, 2014, 89 (06) : 329 - 329
  • [33] Next-Generation Sequencing Allows for Comprehensive Detection of Mitochondrial Variation in Brain Tissue
    Zuchner, Stephan
    Williams, Sion
    Huang, Jia
    Pickrell, Alicia
    Dillon, Lloye
    Moraes, Carlos
    Vance, Jeffery
    NEUROLOGY, 2010, 74 (09) : A83 - A83
  • [34] Next-generation sequencing of the next generation
    Darren J. Burgess
    Nature Reviews Genetics, 2011, 12 : 78 - 79
  • [35] A framework for variation discovery and genotyping using next-generation DNA sequencing data
    DePristo, Mark A.
    Banks, Eric
    Poplin, Ryan
    Garimella, Kiran V.
    Maguire, Jared R.
    Hartl, Christopher
    Philippakis, Anthony A.
    del Angel, Guillermo
    Rivas, Manuel A.
    Hanna, Matt
    McKenna, Aaron
    Fennell, Tim J.
    Kernytsky, Andrew M.
    Sivachenko, Andrey Y.
    Cibulskis, Kristian
    Gabriel, Stacey B.
    Altshuler, David
    Daly, Mark J.
    NATURE GENETICS, 2011, 43 (05) : 491 - +
  • [36] A framework for variation discovery and genotyping using next-generation DNA sequencing data
    Mark A DePristo
    Eric Banks
    Ryan Poplin
    Kiran V Garimella
    Jared R Maguire
    Christopher Hartl
    Anthony A Philippakis
    Guillermo del Angel
    Manuel A Rivas
    Matt Hanna
    Aaron McKenna
    Tim J Fennell
    Andrew M Kernytsky
    Andrey Y Sivachenko
    Kristian Cibulskis
    Stacey B Gabriel
    David Altshuler
    Mark J Daly
    Nature Genetics, 2011, 43 : 491 - 498
  • [37] A research roadmap for next-generation sequencing informatics
    Altman, Russ B.
    Prabhu, Snehit
    Sidow, Arend
    Zook, Justin M.
    Goldfeder, Rachel
    Litwack, David
    Ashley, Euan
    Asimenos, George
    Bustamante, Carlos D.
    Donigan, Katherine
    Giacomini, Kathleen M.
    Johansen, Elaine
    Khuri, Natalia
    Lee, Eunice
    Liang, Xueying Sharon
    Salit, Marc
    Serang, Omar
    Tezak, Zivana
    Wall, Dennis P.
    Mansfield, Elizabeth
    Kass-Hout, Taha
    SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (335)
  • [38] Next-generation sequencing technologies in diabetes research
    Fareed, Mohd
    Chauhan, Waseem
    Fatma, Rafat
    Din, Inshah
    Afzal, Mohammad
    Ahmed, Zabeer
    DIABETES EPIDEMIOLOGY AND MANAGEMENT, 2022, 7
  • [39] Next-Generation Sequencing for Pathogen Detection and Identification
    Frey, Kenneth G.
    Bishop-Lilly, Kimberly A.
    CURRENT AND EMERGING TECHNOLOGIES FOR THE DIAGNOSIS OF MICROBIAL INFECTIONS, 2015, 42 : 525 - 554
  • [40] Next-Generation Sequencing in Diagnostics and Clinical Research
    Hoefler, Gerald
    PATHOBIOLOGY, 2017, 84 (06) : 289 - 291