L-2 error estimates for the Local Discontinuous Galerkin (LDG) method have been theoretically proven for linear convection diffusion problems and periodic boundary conditions. It has been proven that when polynomials of degree k are used, the LDG method has a suboptimal order of convergence k. However, numerical experiments show that under a suitable choice of the numerical flux, higher order of convergence can be achieved. In this paper, we consider Dirichlet boundary conditions and we show that the LDG method has an optimal order of convergence k + 1.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Cao, Zhoujian
Fu, Pei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Fu, Pei
Ji, Li-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Ji, Li-Wei
Xia, Yinhua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Xia, Yinhua
INTERNATIONAL JOURNAL OF MODERN PHYSICS D,
2019,
28
(01):
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R ChinaXiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China