Jordan derivations and antiderivations on triangular matrices

被引:72
|
作者
Benkovic, D [1 ]
机构
[1] Univ Maribor, Maribor 2000, Slovenia
关键词
triangular matrix algebra; Jordan derivation; antiderivation;
D O I
10.1016/j.laa.2004.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define an antiderivation from an algebra A into an A-imodule M as a linear map delta : A --> M such that delta(ab) = delta(b)a + bdelta(a) for all a, b is an element of A. The main result states that every Jordan derivation from the algebra of all upper triangular matrices into its bimodule is the sum of a derivation and an antiderivation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 50 条
  • [31] On the derivations of the quadratic Jordan product in the space of rectangular matrices
    Isidro, Jose M.
    JOURNAL OF ALGEBRA, 2023, 631 : 911 - 927
  • [32] Multiplicative Jordan derivations on triangular n-matrix rings
    Chen, Huimin
    Qi, Xiaofei
    SCIENCEASIA, 2020, 46 (06): : 738 - 745
  • [33] JORDAN LEFT DERIVATIONS IN FULL AND UPPER TRIANGULAR MATRIX RINGS
    Xu, Xiao Wei
    Zhang, Hong Ying
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 753 - 759
  • [34] Derivations of a matrix ring containing a subring of triangular matrices
    Kolesnikov S.G.
    Mal'tsev N.V.
    Russian Mathematics, 2011, 55 (11) : 18 - 26
  • [35] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Mohammad Ashraf
    Mohd Shuaib Akhtar
    Mohammad Afajal Ansari
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3767 - 3776
  • [36] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    Ansari, Mohammad Afajal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3767 - 3776
  • [37] Nonlinear generalized Jordan (sigma, tau)-derivations on triangular algebras
    Alkenani, Ahmad N.
    Ashraf, Mohammad
    Jabeen, Aisha
    SPECIAL MATRICES, 2018, 6 (01): : 216 - 228
  • [38] 2-Local automorphisms and derivations of triangular matrices
    Huang, Wenbo
    Li, Shan
    ADVANCES IN OPERATOR THEORY, 2025, 10 (02)
  • [39] Notes on Jordan (σ, τ)*-derivations and Jordan triple (σ, τ)*-derivations
    Golbasi, Oznur
    Koc, Emine
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 581 - 591
  • [40] Notes on Jordan (σ, τ)*-derivations and Jordan triple (σ, τ)*-derivations
    Öznur Gölbaşı
    Emine Koç
    Aequationes mathematicae, 2013, 85 : 581 - 591