Chip-scale demonstration of hybrid III-V/silicon photonic integration for an FBG interrogator

被引:53
|
作者
Li, Hongqiang [1 ]
Ma, Xiangdong [1 ]
Cui, Beibei [2 ]
Wang, Youxi [1 ]
Zhang, Cheng [1 ]
Zhao, Junfa [1 ]
Zhang, Zanyun [1 ,3 ]
Tang, Chunxiao [1 ]
Li, Enbang [4 ]
机构
[1] Tianjin Polytech Univ, Sch Elect & Informat Engn, Tianjin Key Lab Optoelect Detect Technol & Syst, Tianjin 300387, Peoples R China
[2] Univ Technol Belfort Montbeliard, UBFC, Syst & Transportat Lab SeT, Res Inst Transportat Energy & Soc IRTES, F-90000 Belfort, France
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[4] Univ Wollongong, Sch Phys, Wollongong, NSW 2522, Australia
来源
OPTICA | 2017年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
ON-CHIP; WAVE-GUIDES; SILICON; DEMODULATION; DESIGN; FILTER; LASER; INTERFEROMETER; SPECTROMETERS; PHOTODIODES;
D O I
10.1364/OPTICA.4.000692
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Silicon photonic integration is a means to produce an integrated on-chip fiber Bragg grating (FBG) interrogator. The possibility of integrating the light source, couplers, grating couplers, de-multiplexers, photodetectors (PDs), and other optical elements of the FBG interrogator into one chip may result in game-changing performance advances, considerable energy savings, and significant cost reductions. To the best of our knowledge, this paper is the first to present a hybrid silicon photonic chip based on III-V/silicon-on-insulator photonic integration for an FBG interrogator. The hybrid silicon photonic chip consists of a multiwavelength vertical-cavity surface-emitting laser array and input grating couplers, a multimode interference coupler, an arrayed waveguide grating, output grating couplers, and a PD array. The chip can serve as an FBG interrogator on a chip and offer unprecedented opportunities. With a footprint of 5 mm x 3 mm, the proposed hybrid silicon photonic chip achieves an interrogation wavelength resolution of approximately 1 pm and a wavelength accuracy of about +/- 10 pm. With the measured 1 pm wavelength resolution, the temperature measurement resolution of the proposed chip is approximately 0.1 degrees C. The proposed hybrid silicon photonic chip possesses advantages in terms of cost, manufacturability, miniaturization, and performance. The chip supports applications that require extreme miniaturization down to the level of smart grains. (C) 2017 Optical Society of America
引用
收藏
页码:692 / 700
页数:9
相关论文
共 50 条
  • [31] Hybrid III-V Silicon Photonic Crystal Cavity Emitting at Telecom Wavelengths
    Mauthe, Svenja
    Tiwari, Preksha
    Scherrer, Markus
    Caimi, Daniele
    Sousa, Marilyne
    Schmid, Heinz
    Moselund, Kirsten E.
    Trivino, Noelia Vico
    NANO LETTERS, 2020, 20 (12) : 8768 - 8772
  • [32] Hybrid silicon lasers: Integration of III-V and Silicon photonics using wafer bonding
    Jones, R.
    Park, H.
    Fang, A. W.
    Sysak, M.
    Koch, B.
    Liang, D.
    Chang, H.
    Bowers, J. E.
    2010 IEEE INTERNATIONAL SOI CONFERENCE, 2010,
  • [33] Hybrid III-V/Silicon Photonic Integrated Circuits for Optical Communication Applications
    Duan, Guang-Hua
    Pommarede, Xavier
    Levaufre, Guillaume
    Shen, Alexandre
    Carrara, David
    Girard, Nils
    Gallet, Antonin
    Make, Dalila
    Glastre, Genevieve
    Decobert, Jean
    Lelarge, Francois
    Brenot, Romain
    Olivier, Segolene
    Jany, Christophe
    Malhouitre, Stephane
    Charbonnier, Benoit
    2016 IEEE 13TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2016, : 50 - 51
  • [34] The integration of III-V optoelectronics with silicon circuitry
    Mathine, DL
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) : 952 - 959
  • [35] Integration of III-V optoelectronics with silicon circuitry
    Univ of Arizona, Tucson, United States
    IEEE J Sel Top Quantum Electron, 3 (952-959):
  • [36] Advances in III-V Heterogeneous Integration on Silicon
    Fish, Gregory
    Roth, Jonathan
    Kaman, Volkan
    Fang, Alexander
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 747 - 748
  • [37] Heterogeneous integration of III-V active devices on a silicon-on-insulator photonic platform
    Roelkens, G.
    Brouckaert, J.
    Van Campenhout, J.
    Van Thourhout, D.
    Baets, R.
    2007 4TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2007, : 37 - 39
  • [38] Integration of a III-V light emitter on a silicon photonic IC through transfer printing
    De Groote, A.
    Cardile, P.
    Subramanian, A. Z.
    Fecioru, A. M.
    Bower, C.
    Delbeke, D.
    Baets, R.
    Roelkens, G.
    2016 IEEE 13TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2016, : 166 - 167
  • [39] Back-Side Integration of Hybrid III-V on Silicon DBR Lasers
    Durel, J.
    Ben Bakir, B.
    Jany, C.
    Cremer, S.
    Hassan, K.
    Szelag, B.
    Bria, T.
    Larrey, V.
    Sanchez, L.
    Brianceau, P.
    Dallery, J. -A
    Guiavarch, R.
    Card, T.
    Thibon, R.
    Broquin, J. -E.
    Boeuf, F.
    2017 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2017,
  • [40] Optoelectronic integration - Hybrid laser combines III-V gain with silicon waveguide
    Jones-Bey, HA
    LASER FOCUS WORLD, 2006, 42 (01): : 38 - +