Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell

被引:111
|
作者
Choi, Hyeju [1 ]
Park, Sojin [1 ]
Paek, Sanghyun [1 ]
Ekanayake, Piyasiri [2 ]
Nazeeruddin, Mohammad Khaja [3 ]
Ko, Jaejung [1 ]
机构
[1] Korea Univ, Dept Adv Mat Chem, Sejong City 339700, South Korea
[2] Univ Brunei Darussalam, Fac Sci, Appl Phys Program, BE-1410 Gadong, Brunei
[3] Swiss Fed Inst Technol, Dept Chem & Chem Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
基金
新加坡国家研究基金会;
关键词
ORGANIC SEMICONDUCTORS; DERIVATIVES; DEPOSITION; DEVICES;
D O I
10.1039/c4ta04179h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two symmetrical star-shaped hole transporting materials (HTMs), i.e. FA-MeOPh and TPA-MeOPh with a fused triphenylamine or triphenylamine core and diphenylethenyl side arms were synthesized. FA-MeOPh showed a strong molar absorption coefficient and a red-shifted absorption compared with TPA-MeOPh because of its planar configuration. The power conversion efficiency (PCE) of the perovskite solar cells based on FA-MeOPh and TPA-MeOPh is about 11.86% and 10.79%, in which the efficiency of former is comparable to that (12.75%) of spiro-OMeTAD based cell. The high photocurrent (18.39 mA cm(-2)) of FA-MeOPh based solar cell relative to TPA-MeOPh based one may be attributable to the enhanced absorption in the near-IR region for mp-TiO2/CH3NH3PbI3/HTM based cell. The high mobility and low series resistance of mp-TiO2/CH3NH3PbI3/FA-MeOPh based cell led to the high fill factor (0.698) of FA-MeOPh based solar cell relative to TPA-MeOPh based one (0.627). In addition, the FA-MeOPh based cell showed a relative stability under light soaking for 250 h. The high efficiency, relative stability, synthetically simple and inexpensive materials as the HTMs hold promise to replace the expensive spiro-OMeTAD.
引用
收藏
页码:19136 / 19140
页数:5
相关论文
共 50 条
  • [31] Simply designed carbazole-based hole transporting materials for efficient perovskite solar cells
    Benhattab, Safia
    Cho, An-Na
    Nakar, Rana
    Berton, Nicolas
    Tran-Van, Francois
    Park, Nam-Gyu
    Schmaltz, Bruno
    ORGANIC ELECTRONICS, 2018, 56 : 27 - 30
  • [32] Facile and Stable Fluorene Based Organic Hole Transporting Materials for Efficient Perovskite Solar Cells
    Gayathri, Rajalapati Durga
    Gokulnath, Thavamani
    Park, Ho-Yeol
    Xie, Zhiqing
    Jin, Sung-Ho
    Han, Seung Choul
    Lee, Jae Wook
    MACROMOLECULAR RESEARCH, 2022, 30 (10) : 745 - 750
  • [33] Theoretical investigation of efficient perovskite solar cells employing simple carbazole as hole transporting materials
    El Aallaoui, Najla
    Oukarfi, Benyounes
    Zazoui, Mimoun
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2022, 1217
  • [34] Novel dopant-free hole-transporting materials for efficient perovskite solar cells
    Abdellah, Islam M.
    Chowdhury, Towhid H.
    Lee, Jae-Joon
    Islam, Ashraful
    El-Shafei, Ahmed
    SOLAR ENERGY, 2020, 206 : 279 - 286
  • [35] Hole transporting materials for efficient and stable inorganic-organic hybrid perovskite solar cells
    Seo, Jangwon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [36] Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells
    Vegiraju, Sureshraju
    Ke, Weijun
    Priyanka, Pragya
    Ni, Jen-Shyang
    Wu, Yi-Ching
    Spanopoulos, Ioannis
    Yau, Shueh Lin
    Marks, Tobin J.
    Chen, Ming-Chou
    Kanatzidis, Mercouri G.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)
  • [37] Rational designing of phenothiazine dioxide based hole transporting materials for efficient perovskite solar cells
    Hanan, Muhammad
    Umair
    Mahal, Ahmed
    Iqbal, Javed
    Khera, Rasheed Ahmad
    Akram, Waqas
    Anjum, Irsa
    Arslan, Muhammad
    Adnan, Muhammad
    Kamran, Kashif
    Alotaibi, Hadil Faris
    Al-Haideri, Maysoon
    Farooq, Zahid
    Mahr, Muhammad Shabir
    SOLAR ENERGY, 2024, 272
  • [38] Diaryl ketone-based hole-transporting materials for efficient perovskite solar cells
    Zhu, Linna
    Xu, Jing
    Shan, Yahan
    Zhong, Cheng
    Tang, Xiaosheng
    Long, Dan
    Zhang, Yongping
    Wu, Fei
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (11) : 3226 - 3230
  • [39] Asymmetric Triphenylethylene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells
    Petrulevicius, Julius
    Yang, Yi
    Liu, Cheng
    Steponaitis, Matas
    Kamarauskas, Egidijus
    Daskeviciene, Maryte
    Bati, Abdulaziz S. R.
    Malinauskas, Tadas
    Jankauskas, Vygintas
    Rakstys, Kasparas
    Kanatzidis, Mercouri G.
    Sargent, Edward H.
    Getautis, Vytautas
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) : 7310 - 7316
  • [40] Facile and Stable Fluorene Based Organic Hole Transporting Materials for Efficient Perovskite Solar Cells
    Rajalapati Durga Gayathri
    Thavamani Gokulnath
    Ho-Yeol Park
    Zhiqing Xie
    Sung-Ho Jin
    Seung Choul Han
    Jae Wook Lee
    Macromolecular Research, 2022, 30 : 745 - 750