A hybrid algorithm of partitioned finite element and interface element for dynamic contact problems with discontinuous deformation

被引:11
|
作者
Fan, Shujie [1 ]
Li, Tongchun [1 ,2 ]
Liu, Xiaoqing [1 ]
Zhao, Lanhao [1 ]
Niu, Zhiwei [1 ]
Qi, Huijun [1 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
[2] Natl Engn Res Ctr Water Resource Efficient Utiliz, Nanjing 210098, Jiangsu, Peoples R China
关键词
Finite element model; Localized discontinuous deformation; Rigid displacement; Contact problem; Dynamic analysis; BOUNDARY ELEMENTS; EARTHQUAKE; MODEL;
D O I
10.1016/j.compgeo.2018.04.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work introduces the interactive method of partitioned finite element and interface element (PFE/TE) to analyse the dynamic behaviours of structures with discontinuous deformations. The dynamic IE equations can be derived by combining the nonlinear equation based on the Newmark method and the dynamic equilibrium equation. The nodal displacement can be solved via PFE by combining the contact force into the total force vector; consequently, the failure state can be procured. PFE/IE improves the computational efficiency as nonlinear iteration is limited to the possible contact region. Dynamic results obtained with other techniques or experiments are introduced and compared to validate the accuracy and robustness of PFE/IE.
引用
收藏
页码:130 / 140
页数:11
相关论文
共 50 条
  • [31] A weighted finite element mass redistribution method for dynamic contact problems
    Dabaghi, F.
    Krejci, P.
    Petrov, A.
    Pousin, J.
    Renard, Y.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 (338-356) : 338 - 356
  • [32] DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 400 - 418
  • [33] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: A PRIORI AND A POSTERIORI ERROR ESTIMATIONS
    Cai, Zhiqiang
    Ye, Xiu
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1761 - 1787
  • [34] AUTOMATIC CONTACT SEARCHING ALGORITHM FOR DYNAMIC FINITE-ELEMENT ANALYSIS
    ZHONG, ZH
    NILSSON, L
    COMPUTERS & STRUCTURES, 1994, 52 (02) : 187 - 197
  • [35] Analysis of Discontinuous Bubble Immersed Finite Element Methods for Elliptic Interface Problems with Nonhomogeneous Interface Conditions
    Jo, Gwanghyun
    Park, Hyeokjoo
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (03)
  • [36] A stabilized discontinuous finite element method for elliptic problems
    Ewing, RE
    Wang, JP
    Yang, YJ
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (1-2) : 83 - 104
  • [37] A discontinuous hp finite element method for diffusion problems
    Oden, JT
    Babuska, I
    Baumann, CE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (02) : 491 - 519
  • [38] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402
  • [39] Discontinuous Finite Volume Element Method for Parabolic Problems
    Bi, Chunjia
    Geng, Jiaqiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) : 367 - 383
  • [40] A fast local nonlinear solution technique based on the partitioned finite element and interface element method
    Qi, Huijun
    Li, Tongchun
    Liu, Xiaoqing
    Zhao, Lanhao
    He, Jinwen
    Li, Xiaona
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (10) : 2214 - 2236