Bifurcation of vortex and boundary-vortex solutions in a Ginzburg-Landau model

被引:1
|
作者
Chen, Chao-Nien [1 ]
Morita, Yoshihisa
机构
[1] Natl Changhua Univ Educ, Dept Math, Gifu 500, Taiwan
[2] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
D O I
10.1088/0951-7715/20/4/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a simplified Ginzburg-Landau model of superconductivity in a two-dimensional infinite strip domain under the assumption of the periodicity in the infinite direction. This model equation has two physical parameters,., h, coming from the Ginzburg-Landau parameter and the strength of an applied magnetic field, respectively. We study the bifurcation of non-trivial solutions in the parameter space (h, lambda), in particular through a bifurcation of the existence of a vortex solution, that is, a solution with isolated zeros. We first observe that in the parameter space there is a smooth (bifurcation) curve on which a solution with k-mode in the periodic direction takes place. This bifurcating solution, however, is vortexless. Then analysing the local bifurcation structure around the critical point at which two bifurcation curves for k and m(> k) intersect, we prove the existence of vortex solutions under a generic condition. Moreover, we show that the solutions have vortices lying on a boundary if the parameters belong to a certain curve emanating from the critical point. The stability of such solutions is also discussed.
引用
收藏
页码:943 / 964
页数:22
相关论文
共 50 条
  • [21] Existence of the Ginzburg-Landau vortex number
    Aigner, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) : 17 - 22
  • [22] VORTEX PATTERNS IN GINZBURG-LANDAU MINIMIZERS
    Serfaty, Sylvia
    Sandier, Etienne
    [J]. XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 246 - +
  • [23] Mixed vortex-antivortex solutions of Ginzburg-Landau equations
    Lin, FH
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) : 103 - 127
  • [24] Global stabilization of a nonlinear Ginzburg-Landau model of vortex shedding
    Aamo, OM
    Krstic, M
    [J]. EUROPEAN JOURNAL OF CONTROL, 2004, 10 (02) : 105 - 116
  • [25] Elliptic vortex beam in a fractional complex Ginzburg-Landau model
    Yang, Junxing
    Zhu, Xing
    Peng, Xi
    He, Yingji
    Wang, Xiaojun
    Qiu, Yunli
    [J]. JOURNAL OF OPTICS, 2021, 23 (11)
  • [26] On the properties of a single vortex solution of Ginzburg-Landau model of superconductivity
    Coskun, Erhan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 568
  • [27] Vortex lattice structural transitions: A Ginzburg-Landau model approach
    Klironomos, AD
    Dorsey, AT
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (09)
  • [28] Vortex dynamics for the Ginzburg-Landau wave equation
    R.L. Jerrard
    [J]. Calculus of Variations and Partial Differential Equations, 1999, 9 : 1 - 30
  • [29] GINZBURG-LANDAU VORTEX LINES AND THE ELASTICA FUNCTIONAL
    Moser, Roger
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 71 - 107
  • [30] Vortex solitons of the discrete Ginzburg-Landau equation
    Mejia-Cortes, C.
    Soto-Crespo, J. M.
    Vicencio, Rodrigo A.
    Molina, Mario I.
    [J]. PHYSICAL REVIEW A, 2011, 83 (04):