Bifurcation of vortex and boundary-vortex solutions in a Ginzburg-Landau model

被引:1
|
作者
Chen, Chao-Nien [1 ]
Morita, Yoshihisa
机构
[1] Natl Changhua Univ Educ, Dept Math, Gifu 500, Taiwan
[2] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
D O I
10.1088/0951-7715/20/4/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a simplified Ginzburg-Landau model of superconductivity in a two-dimensional infinite strip domain under the assumption of the periodicity in the infinite direction. This model equation has two physical parameters,., h, coming from the Ginzburg-Landau parameter and the strength of an applied magnetic field, respectively. We study the bifurcation of non-trivial solutions in the parameter space (h, lambda), in particular through a bifurcation of the existence of a vortex solution, that is, a solution with isolated zeros. We first observe that in the parameter space there is a smooth (bifurcation) curve on which a solution with k-mode in the periodic direction takes place. This bifurcating solution, however, is vortexless. Then analysing the local bifurcation structure around the critical point at which two bifurcation curves for k and m(> k) intersect, we prove the existence of vortex solutions under a generic condition. Moreover, we show that the solutions have vortices lying on a boundary if the parameters belong to a certain curve emanating from the critical point. The stability of such solutions is also discussed.
引用
收藏
页码:943 / 964
页数:22
相关论文
共 50 条
  • [1] Bifurcation of vortex solutions to a Ginzburg-Landau equation in an annulus
    Morita, Yoshihisa
    [J]. SINGULARITIES IN PDE AND THE CALCULUS OF VARIATIONS, 2008, 44 : 187 - 200
  • [2] Boundary control of the linearized Ginzburg-Landau model of vortex shedding
    Aamo, OM
    Smyshlyaev, A
    Krstic, M
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) : 1953 - 1971
  • [3] The bifurcation of vortex current in the time-dependent Ginzburg-Landau model
    Xu, T
    Yang, GH
    Duan, YS
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 157 - 158
  • [4] Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity
    Alama, S
    Bronsard, L
    Giorgi, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) : 399 - 424
  • [5] Ginzburg-Landau vortex analogues
    Domrin, AV
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 124 (01) : 872 - 886
  • [6] Vortex analysis of the periodic Ginzburg-Landau model
    Aydi, Hassen
    Sandier, Etienne
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1223 - 1236
  • [7] Ginzburg-Landau vortex analogues
    A. V. Domrin
    [J]. Theoretical and Mathematical Physics, 2000, 124 : 872 - 886
  • [8] A Model for Vortex Nucleation in the Ginzburg-Landau Equations
    Iyer, Gautam
    Spirn, Daniel
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1933 - 1956
  • [9] Output feedback boundary control of a Ginzburg-Landau model of vortex shedding
    Aamo, Ole Morten
    Smyshlyaev, Andrey
    Krstic, Miroslav
    Foss, Bjarne A.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) : 742 - 748
  • [10] Vortex analysis in the Ginzburg-Landau model of superconductivity
    Sandier, E
    Serfaty, S
    [J]. NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 491 - 506