Localisation of Spectral Sums Corresponding to the Sub-Laplacian on the Heisenberg Group

被引:0
|
作者
Garg, Rahul [1 ]
Jotsaroop, K. [2 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhauri, India
[2] Indian Inst Sci Educ & Res Mohali, Dept Math, Sahibzada Ajit Singh Nag, India
关键词
GENERALIZED LOCALIZATION; EVERYWHERE CONVERGENCE; FOURIER; PRINCIPLE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study localisation of spectral sums {S-R}(R>0) associated with the sub-Laplacian L on the Heisen-berg Group H-d where S(R)f := integral(R)(0) dE(lambda)f, with L = integral(infinity)(0) lambda dE(lambda) being the spectral resolution of L. We prove that for any compactly supported function f is an element of L-2(H-d), and for any gamma <1/2, R(gamma)S(R)f -> 0 as R -> infinity, almost everywhere off supp(f ).
引用
收藏
页码:579 / 609
页数:31
相关论文
共 50 条
  • [1] SPECTRAL TRANSFORM FOR THE SUB-LAPLACIAN ON THE HEISENBERG-GROUP
    JORGENSEN, PET
    KLINK, WH
    JOURNAL D ANALYSE MATHEMATIQUE, 1988, 50 : 101 - 121
  • [2] Estimates for spectral projection operators of the sub-Laplacian on the Heisenberg group
    Chang, DC
    Tie, JZ
    JOURNAL D ANALYSE MATHEMATIQUE, 1997, 71 (1): : 315 - 347
  • [3] Estimates for spectral projection operators of the sub-laplacian on the heisenberg group
    Der-Chen Chang
    Jingzhi Tie
    Journal d’Analyse Mathématique, 1997, 71 : 315 - 347
  • [4] THE SPECTRUM OF THE SUB-LAPLACIAN ON THE HEISENBERG GROUP
    Dasgupta, Aparajita
    Molahajloo, Shahla
    Wong, Man-Wah
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (02) : 269 - 276
  • [5] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    Wang, Hai-meng
    Wu, Qing-yan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (03) : 365 - 378
  • [6] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    WANG Hai-meng
    WU Qing-yan
    AppliedMathematics:AJournalofChineseUniversities, 2017, 32 (03) : 365 - 378
  • [7] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    Hai-meng Wang
    Qing-yan Wu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 365 - 378
  • [8] An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group
    Haimeng Wang
    Bei Wang
    Advances in Applied Clifford Algebras, 2022, 32
  • [9] An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group
    Wang, Haimeng
    Wang, Bei
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [10] Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group
    Dasgupta, Aparajita
    Wong, M. W.
    PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 27 - +