An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group

被引:0
|
作者
Wang, Haimeng [1 ]
Wang, Bei [1 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math & Informat Technol, Nanjing 210013, Peoples R China
关键词
Fundamental solution; The group Fourier transform; The non-isotropic quaternionic Heisenberg group; Sub-Laplacian; DIFFERENTIAL-OPERATORS; FUNDAMENTAL SOLUTION; COMPLEX; KERNEL;
D O I
10.1007/s00006-022-01206-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an operator related to the sub-Laplacian on the non-isotropic quaternionic Heisenberg group and construct the fundamental solution for this operator. For the isotropic case, we derive the closed form of this solution. The techniques we used can be applied to the standard Heisenberg group. We also give the connection between this operator and the Heisenberg sub-Laplacian.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group
    Haimeng Wang
    Bei Wang
    Advances in Applied Clifford Algebras, 2022, 32
  • [2] THE SPECTRUM OF THE SUB-LAPLACIAN ON THE HEISENBERG GROUP
    Dasgupta, Aparajita
    Molahajloo, Shahla
    Wong, Man-Wah
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (02) : 269 - 276
  • [3] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    Wang, Hai-meng
    Wu, Qing-yan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (03) : 365 - 378
  • [4] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    WANG Hai-meng
    WU Qing-yan
    AppliedMathematics:AJournalofChineseUniversities, 2017, 32 (03) : 365 - 378
  • [5] SPECTRAL TRANSFORM FOR THE SUB-LAPLACIAN ON THE HEISENBERG-GROUP
    JORGENSEN, PET
    KLINK, WH
    JOURNAL D ANALYSE MATHEMATIQUE, 1988, 50 : 101 - 121
  • [6] On fundamental solution for powers of the sub-Laplacian on the Heisenberg group
    Hai-meng Wang
    Qing-yan Wu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 365 - 378
  • [7] Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group
    Dasgupta, Aparajita
    Wong, M. W.
    PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 27 - +
  • [8] Carnot geometry and the resolvent of the sub-Laplacian for the Heisenberg group
    Perry, PA
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) : 745 - 769
  • [9] Localisation of Spectral Sums Corresponding to the Sub-Laplacian on the Heisenberg Group
    Garg, Rahul
    Jotsaroop, K.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (02) : 579 - 609
  • [10] Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator
    Chang, Der-Chen
    Li, Yutian
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175):