Effects of Magnetic Abrasive Finishing on Microstructure and Mechanical Properties of Inconel 718 Processed by Laser Powder Bed Fusion

被引:5
|
作者
Zhao, Yunhao [1 ]
Ratay, Jason [2 ]
Li, Kun [1 ]
Yamaguchi, Hitomi [2 ]
Xiong, Wei [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15261 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
来源
关键词
magnetic abrasive finishing; microstructure evolution; mechanical property; laser powder bed fusion; Inconel; 718; MATERIAL REMOVAL; SURFACE-ROUGHNESS; RESIDUAL-STRESS; COMPONENTS; STRENGTH; BEHAVIOR;
D O I
10.3390/jmmp6020043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface finishing is challenging in the context of additively manufactured components with complex geometries. Magnetic abrasive finishing (MAF) is a promising surface finishing technology that can refine the surface quality of components with complex shapes produced by additive manufacturing. However, there is insufficient study regarding the impact of MAF on microstructure-property relationships for additively manufactured builds, which is critical for evaluating mechanical performance. In this work, we studied the effects of different combinations of MAF and heat treatment steps on the microstructure-property relationships of Inconel 718 superalloys made by laser powder bed fusion (LPBF). The application of MAF was found to significantly reduce the surface roughness and refine the grain size of aged alloys. Moreover, MAF was able to increase the alloy elongation, which could be further influenced by the sequence of MAF and different heat treatment steps. The highest elongation could be achieved when MAF was performed between homogenization and aging processes. This work indicates that an effective combination of surface finishing and heat treatment is critical for the improvement of alloy performance. Furthermore, it demonstrates a promising solution for improving the performance of LPBF Inconel 718 by integrating MAF and heat treatment, which provides new perspectives on the post-processing optimization of additively manufactured alloys.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Improving Productivity in the Laser Powder Bed Fusion of Inconel 718 by Increasing Layer Thickness: Effects on Mechanical Behavior
    Paradise, Paul
    Patil, Dhiraj
    Van Handel, Nicole
    Temes, Samuel
    Saxena, Anushree
    Bruce, Daniel
    Suder, Austin
    Clonts, Shawn
    Shinde, Mandar
    Noe, Cameron
    Godfrey, Donald
    Hota, Rakesh
    Bhate, Dhruv
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (08) : 6205 - 6220
  • [22] Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion
    Kreitcberg, Alena
    Brailovski, Vladimir
    Turenne, Sylvain
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 : 1 - 10
  • [23] Improving Productivity in the Laser Powder Bed Fusion of Inconel 718 by Increasing Layer Thickness: Effects on Mechanical Behavior
    Paul Paradise
    Dhiraj Patil
    Nicole Van Handel
    Samuel Temes
    Anushree Saxena
    Daniel Bruce
    Austin Suder
    Shawn Clonts
    Mandar Shinde
    Cameron Noe
    Donald Godfrey
    Rakesh Hota
    Dhruv Bhate
    Journal of Materials Engineering and Performance, 2022, 31 : 6205 - 6220
  • [24] On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718
    Schroder, Jakob
    Mishurova, Tatiana
    Fritsch, Tobias
    Serrano-Munoz, Itziar
    Evans, Alexander
    Sprengel, Maximilian
    Klaus, Manuela
    Genzel, Christoph
    Schneider, Judith
    Bruno, Giovanni
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
  • [25] Effect of rotation angle on surface morphology, microstructure, and mechanical properties of Inconel 718 alloy fabricated by high power laser powder bed fusion
    Zhong, Qiao
    Wei, Kaiwen
    Ouyang, Taoyuan
    Li, Xiangyou
    Zeng, Xiaoyan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 154 : 30 - 42
  • [26] Microstructure and mechanical properties of crack-free Inconel 738 fabricated by laser powder bed fusion
    Jena, Ashutosh
    Atabay, Sila Ece
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 850
  • [27] Laser powder bed fusion of Inconel 718 on 316 stainless steel
    Chen, Wei-Ying
    Zhang, Xuan
    Li, Meimei
    Xu, Ruqing
    Zhao, Cang
    Sun, Tao
    ADDITIVE MANUFACTURING, 2020, 36
  • [28] In Situ Alloying of a Modified Inconel 625 via Laser Powder Bed Fusion: Microstructure and Mechanical Properties
    Marchese, Giulio
    Beretta, Margherita
    Aversa, Alberta
    Biamino, Sara
    METALS, 2021, 11 (06)
  • [29] Spatter and oxide formation in laser powder bed fusion of Inconel 718
    Gasper, A. N. D.
    Szost, B.
    Wang, X.
    Johns, D.
    Sharma, S.
    Clare, A. T.
    Ashcroft, I. A.
    ADDITIVE MANUFACTURING, 2018, 24 : 446 - 456
  • [30] Microstructure, mechanical property and heat treatment schedule of the Inconel 718 manufactured by low and high power laser powder bed fusion
    Yang, Huihui
    Wang, Zemin
    Wang, Hongze
    Wu, Yi
    Wang, Haowei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 863