Distributed simultaneous state and parameter estimation of nonlinear systems

被引:5
|
作者
Liu, Siyu [1 ,2 ]
Yin, Xunyuan [3 ]
Liu, Jianbang [4 ]
Liu, Jinfeng [2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[4] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China
来源
关键词
Subsystem decomposition; Sensitivity analysis; Community structure detection; Distributed estimation; Nonlinear process; INTEGRATED PROCESS; DECOMPOSITION; IDENTIFIABILITY; COMMUNICATION; ALGORITHM;
D O I
10.1016/j.cherd.2022.02.027
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, we consider distributed simultaneous state and parameter estimation for a class of nonlinear systems, for which the augmented model comprising both the states and the parameters is only partially observable. Specifically, we first illustrate how the sensitivity analysis (SA) can select variables for simultaneous state and parameter estimation. Then, a community structure detection (CSD) based process decomposition method is proposed for dividing the entire system into interconnected subsystems as the basis of distributed estimation. Next, we develop local moving horizon estimators based on the configured subsystem models, and the local estimators communicate with each other to exchange their estimates. Finally, an SA and CSD based distributed moving horizon estimation (DMHE) mechanism is proposed. The effectiveness of the proposed approach is illustrated using a chemical process consisting of four connected reactors. (c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [41] Simultaneous State and Parameter Estimation for a Nonlinear Time-Varying System.
    Viveros, Rodrigo A.
    Yuz, Juan I.
    Perez-Ibacache, Ricardo R.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2014, 11 (03): : 263 - 274
  • [42] Simultaneous input and state estimation for nonlinear systems with applications to flow field estimation
    Fang, Huazhen
    de Callafon, Raymond A.
    Cortes, Jorge
    AUTOMATICA, 2013, 49 (09) : 2805 - 2812
  • [43] Simultaneous state and fault estimation for a class of nonlinear Markov jump systems by distributed fault-tolerant observers
    Yu, Chuan
    Su, Qingyu
    Xiao, Qian-Cheng
    Long, Yue
    Li, Jian-Ning
    Zhong, Guang-Xin
    SYSTEMS & CONTROL LETTERS, 2024, 193
  • [44] Distributed estimation for nonlinear systems
    Battilotti, Stefano
    Mekhail, Matteo
    AUTOMATICA, 2019, 107 : 562 - 573
  • [45] Robust Distributed Parameter Estimation of Nonlinear Systems With Missing Data Over Networks
    Chen, Sicong
    Liu, Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) : 2228 - 2244
  • [46] ESTIMATION OF DISTRIBUTED PARAMETER-SYSTEMS
    SCHAECHTER, DB
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1982, 5 (01) : 22 - 26
  • [48] Online Noise Identification for Joint State and Parameter Estimation of Nonlinear Systems
    Kontoroupi, Thaleia
    Smyth, Andrew W.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2016, 2 (03):
  • [49] Optimal initial state for fast parameter estimation in nonlinear dynamical systems
    Li, Qiaochu
    Jauberthie, Carine
    Denis-Vidal, Lilianne
    Cherfi, Zohra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 171 : 109 - 117
  • [50] Parameter identification and state estimation for continuous-time nonlinear systems
    Floret-Pontet, F
    Lamnabhi-Lagarrigue, F
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 394 - 399