A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features

被引:34
|
作者
Wang, Yizhen [1 ]
Zhang, Ningqing [1 ]
Chen, Xiong [1 ,2 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
[2] Zhuhai Fudan Innovat Inst, Zhuhai 519000, Peoples R China
关键词
short-term load forecasting; recurrent neural network; residential load forecasting; meteorological data; PREDICTION;
D O I
10.3390/en14102737
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With economic growth, the demand for power systems is increasingly large. Short-term load forecasting (STLF) becomes an indispensable factor to enhance the application of a smart grid (SG). Other than forecasting aggregated residential loads in a large scale, it is still an urgent problem to improve the accuracy of power load forecasting for individual energy users due to high volatility and uncertainty. However, as an important variable that affects the power consumption pattern, the influence of weather factors on residential load prediction is rarely studied. In this paper, we review the related research of power load forecasting and introduce a short-term residential load forecasting model based on a long short-term memory (LSTM) recurrent neural network with weather features as an input.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Forecasting Short-Term Electric Load with a Hybrid of ARIMA Model and LSTM Network
    Pooniwala, Nevil
    Sutar, Rajendra
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [32] Recurrent neural networks for short-term load forecasting
    Vermaak, J
    Botha, EC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (01) : 126 - 132
  • [33] Short-Term Load Forecasting based on ResNet and LSTM
    Choi, Hyungeun
    Ryu, Seunghyoung
    Kim, Hongseok
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [34] Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks
    Agga, First Ali
    Abbou, Second Ahmed
    El Houm, Yassine
    Labbadi, Moussa
    IFAC PAPERSONLINE, 2022, 55 (12): : 777 - 781
  • [35] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [36] Recurrent inception convolution neural network for multi short-term load forecasting
    Kim, Junhong
    Moon, Jihoon
    Hwang, Eenjun
    Kang, Pilsung
    ENERGY AND BUILDINGS, 2019, 194 : 328 - 341
  • [37] Short-term load forecasting using Multiscale BiLinear Recurrent Neural Network
    Park, Dong-Chul
    Tran, Chung Nguyen
    Lee, Yunsik
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 329 - 338
  • [38] A multiple time series-based recurrent neural network for short-term load forecasting
    Bing Zhang
    Jhen-Long Wu
    Pei-Chann Chang
    Soft Computing, 2018, 22 : 4099 - 4112
  • [39] A multiple time series-based recurrent neural network for short-term load forecasting
    Zhang, Bing
    Wu, Jhen-Long
    Chang, Pei-Chann
    SOFT COMPUTING, 2018, 22 (12) : 4099 - 4112
  • [40] Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    IEEE ACCESS, 2020, 8 (08): : 172524 - 172533