Evaporative Cooling of Antiprotons to Cryogenic Temperatures

被引:83
|
作者
Andresen, G. B. [1 ]
Ashkezari, M. D. [2 ]
Baquero-Ruiz, M. [3 ]
Bertsche, W. [4 ]
Bowe, P. D. [1 ]
Butler, E. [4 ]
Cesar, C. L. [5 ]
Chapman, S. [3 ]
Charlton, M. [4 ]
Fajans, J. [3 ]
Friesen, T. [6 ]
Fujiwara, M. C. [7 ]
Gill, D. R. [7 ]
Hangst, J. S. [1 ]
Hardy, W. N. [8 ]
Hayano, R. S. [9 ]
Hayden, M. E. [2 ]
Humphries, A. [4 ]
Hydomako, R. [6 ]
Jonsell, S. [4 ,10 ]
Kurchaninov, L. [7 ]
Lambo, R. [5 ]
Madsen, N. [4 ]
Menary, S. [11 ]
Nolan, P. [12 ]
Olchanski, K. [7 ]
Olin, A. [7 ]
Povilus, A. [3 ]
Pusa, P. [12 ]
Robicheaux, F. [13 ]
Sarid, E. [14 ]
Silveira, D. M. [15 ,16 ]
So, C. [3 ]
Storey, J. W. [7 ]
Thompson, R. I. [6 ]
van der Werf, D. P. [4 ]
Wilding, D. [4 ]
Wurtele, J. S. [3 ]
Yamazaki, Y. [15 ,16 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales
[5] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[6] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[7] TRIUMF, Vancouver, BC V6T 2A3, Canada
[8] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[9] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[10] Stockholm Univ, SE-10609 Stockholm, Sweden
[11] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada
[12] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England
[13] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
[14] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel
[15] RIKEN, Adv Sci Inst, Atom Phys Lab, Wako, Saitama 3510198, Japan
[16] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
ANTIHYDROGEN PRODUCTION; PLASMA; CONFINEMENT; TRAP;
D O I
10.1103/PhysRevLett.105.013003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication
    Iqbal, Asif
    Zhao, Guolong
    Zaini, Juliana
    Jamil, Muhammad
    Nauman, Malik M.
    Khan, Aqib M.
    Zhao, Wei
    He, Ning
    Suhaimi, Hazwani
    [J]. COMPOSITE STRUCTURES, 2021, 267
  • [23] Developments in evaporative cooling and enhanced evaporative cooling - A review
    Yang, Yifan
    Cui, Gary
    Lan, Christopher Q.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113
  • [24] Simulation method for evaporative cooling of trapped Bose gases at finite temperatures
    Arahata, Emiko
    Nikuni, Tetsuro
    [J]. arXiv, 2023,
  • [25] A novel cooling scheme for antiprotons
    Kellerbauer, A
    Walz, J
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [26] EVAPORATIVE COOLING
    MARG, K
    [J]. PLANT ENGINEERING, 1983, 37 (08) : 122 - 124
  • [27] EVAPORATIVE COOLING
    STUART, F
    [J]. ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1988, 30 (10): : 7 - 7
  • [28] EVAPORATIVE COOLING
    KLOTS, CE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (11): : 5854 - 5860
  • [29] Evaporative cooling
    Rosol, Steve M.
    [J]. Engineered Systems, 1998, 15 (11):
  • [30] STRUCTURAL HETEROGENEITY IN PROTEINS AT CRYOGENIC TEMPERATURES - COOLING RATE DEPENDENCE
    CHU, K
    NIENHAUS, GU
    PHILIPP, R
    [J]. CHEMICAL PHYSICS LETTERS, 1993, 216 (3-6) : 275 - 280