Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

被引:5
|
作者
Choi, Hyunwoo [1 ]
Kim, Tae Geun [2 ]
Shin, Changhwan [1 ]
机构
[1] Univ Seoul, Dept Elect & Comp Engn, Seoul 02504, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Topological insulator; Quantum capacitance; Steep switching devices; Metal-oxide-semiconductor field-effect transistor (MOSFET); TRANSPORT; BI2SE3;
D O I
10.1016/j.apsusc.2017.02.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in Ifs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C-T(-1) = C-Q(-1) C-SiO2(-1)). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 20
页数:5
相关论文
共 50 条
  • [21] Microwave Photoresistance of a Two-Dimensional Topological Insulator in a HgTe Quantum Well
    A. S. Yaroshevich
    Z. D. Kvon
    G. M. Gusev
    N. N. Mikhailov
    JETP Letters, 2020, 111 : 121 - 125
  • [22] Energy relaxation in a quantum dot at the edge of a two-dimensional topological insulator
    D. V. Khomitsky
    E. A. Lavrukhina
    A. A. Chubanov
    N. Njiya
    Semiconductors, 2017, 51 : 1505 - 1512
  • [23] Microwave Photoresistance of a Two-Dimensional Topological Insulator in a HgTe Quantum Well
    Yaroshevich, A. S.
    Kvon, Z. D.
    Gusev, G. M.
    Mikhailov, N. N.
    JETP LETTERS, 2020, 111 (02) : 121 - 125
  • [24] Energy Relaxation in a Quantum Dot at the Edge of a Two-Dimensional Topological Insulator
    Khomitsky, D. V.
    Lavrukhina, E. A.
    Chubanov, A. A.
    Njiya, N.
    SEMICONDUCTORS, 2017, 51 (11) : 1505 - 1512
  • [25] Symmetry Dictated Grain Boundary State in a Two-Dimensional Topological Insulator
    Kim, Hyo Won
    Kang, Seoung-Hun
    Kim, Hyun-Jung
    Chae, Kisung
    Cho, Suyeon
    Ko, Wonhee
    Jeon, Sangjun
    Kang, Se Hwang
    Yang, Heejun
    Kim, Sung Wng
    Park, Seongjun
    Hwang, Sungwoo
    Kwon, Young-Kyun
    Son, Young-Woo
    NANO LETTERS, 2020, 20 (08) : 5837 - 5843
  • [26] Bifurcation of the edge-state width in a two-dimensional topological insulator
    Doh, Hyeonjin
    Jeon, Gun Sang
    PHYSICAL REVIEW B, 2013, 88 (24)
  • [27] Two-Dimensional Topological Insulator State in Cadmium Arsenide Thin Films
    Lygo, Alexander C.
    Guo, Binghao
    Rashidi, Arman
    Huang, Victor
    Cuadros-Romero, Pablo
    Stemmer, Susanne
    PHYSICAL REVIEW LETTERS, 2023, 130 (04)
  • [28] Two-Dimensional-Dirac Surface States and Bulk Gap Probed via Quantum Capacitance in a Three-Dimensional Topological Insulator
    Wang, Jimin
    Gorini, Cosimo
    Richter, Klaus
    Wang, Zhiwei
    Ando, Yoichi
    Weiss, Dieter
    NANO LETTERS, 2020, 20 (12) : 8493 - 8499
  • [29] Proposed two-dimensional topological insulator in SiTe
    Ma, Yandong
    Heine, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [30] Two-dimensional ferromagnetic extension of a topological insulator
    Kagerer, P.
    Fornari, C. I.
    Buchberger, S.
    Tschirner, T.
    Veyrat, L.
    Kamp, M.
    Tcakaev, A. V.
    Zabolotnyy, V.
    Morelhao, S. L.
    Geldiyev, B.
    Mueller, S.
    Fedorov, A.
    Rienks, E.
    Gargiani, P.
    Valvidares, M.
    Folkers, L. C.
    Isaeva, A.
    Buechner, B.
    Hinkov, V.
    Claessen, R.
    Bentmann, H.
    Reinert, F.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):