Complexity of Paths, Trails and Circuits in Arc-Colored Digraphs

被引:0
|
作者
Gourves, Laurent [1 ,2 ]
Lyra, Adria [3 ,4 ]
Martinhon, Carlos [3 ]
Monnot, Jerome [1 ,2 ]
机构
[1] CNRS, FRE 3234, F-75775 Paris, France
[2] Univ Paris 09, LAMSADE, F-75775 Paris 16, France
[3] Univ Fed Fluminense, Inst Comp, BR-24210240 Niteroi, RJ, Brazil
[4] CEFET, Fed Ctr Techn Educ Celso S Fonseca, BR-2604127 Rio De Janeiro, RJ, Brazil
来源
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS | 2010年 / 6108卷
关键词
Arc-colored digraphs; Properly arc-colored paths/trails and circuits; Hamiltonian directed path; arc-colored tournaments; Polynomial algorithms; NP-completeness; ALTERNATING CYCLES; EULERIAN CYCLES; COMPLETE GRAPHS; MULTIGRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We deal with different algorithmic questions regarding properly arc-colored s-t paths, trails and circuits in arc-colored digraphs. Given an arc-colored digraph D-c with c >= 2 colors, we show that the problem of maximizing the number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of one properly arc-colored s-t path is NP-complete even for planar digraphs containing no properly arc-colored circuits and c = Omega(n), where n denotes the number of vertices in D-c. If the digraph is an arc-colored tournament, we show that deciding whether it contains a properly arc-colored circuit passing through a given vertex x (resp., properly arc-colored Hamiltonian s-t path) is NP-complete, even if c = 2. As a consequence, we solve a weak version of an open problem posed in Gutin et. al. [17].
引用
收藏
页码:222 / +
页数:3
相关论文
共 48 条
  • [31] Two arc-disjoint paths in Eulerian digraphs
    Frank, A
    Ibaraki, T
    Nagamochi, H
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (04) : 557 - 589
  • [32] ON THE COMPLEXITY OF THE COLORFUL DIRECTED PATHS IN VERTEX COLORING OF DIGRAPHS
    Saqaeeyan, S.
    Mollaahmadi, E.
    Dehghan, A.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (02) : 1 - 7
  • [33] EULERIAN CIRCUITS WITH NO MONOCHROMATIC TRANSITIONS IN EDGE- COLORED DIGRAPHS
    Carraher, James M.
    Hartke, Stephen G.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1924 - 1939
  • [34] (H, k)-reachability in H-arc-colored digraphs
    Germán Benítez-Bobadilla
    Hortensia Galeana-Sánchez
    César Hernández-Cruz
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [35] (H, k)-reachability in H-arc-colored digraphs
    Benitez-Bobadilla, German
    Galeana-Sanchez, Hortensia
    Hernandez-Cruz, Cesar
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [36] Complexity of some arc-partition problems for digraphs
    Bang-Jensen, J.
    Bessy, S.
    Goncalves, D.
    Picasarri-Arrieta, L.
    THEORETICAL COMPUTER SCIENCE, 2022, 928 : 167 - 182
  • [37] Fully dynamic shortest paths in digraphs with arbitrary arc weights
    Frigioni, D
    Marchetti-Spaccamela, A
    Nanni, U
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 49 (01): : 86 - 113
  • [38] Longest paths through an arc in strong semicomplete multipartite digraphs
    Volkmann, L
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 331 - 337
  • [39] γ-CYCLES AND TRANSITIVITY BY MONOCHROMATIC PATHS IN ARC-COLOURED DIGRAPHS
    Casas-Bautista, Enrique
    Galeana-Sanchez, Hortensia
    Rojas-Monroy, Rocio
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (03) : 493 - 507
  • [40] Cycles and transitivity by monochromatic paths in arc-coloured digraphs
    Casas-Bautista, Enrique
    Galeana-Sanchez, Hortensia
    Rojas-Monroy, Rocio
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 104 - 112