Improved sufficient condition of l1-2-minimisation for robust signal recovery

被引:18
|
作者
Wang, Wendong [1 ]
Wang, Jianjun [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
基金
中国博士后科学基金;
关键词
compressed sensing; minimisation; matrix algebra; restricted orthogonality property; improved sufficient condition; robust signal recovery; restricted isometry property; l1-2-minimisation; MINIMIZATION; PROPERTY;
D O I
10.1049/el.2019.2205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By means of the restricted isometry property of order k and the restricted orthogonality property of order (k,k), this Letter mainly establishes an improved sufficient condition for a recently emerged $\ell _{1-2}$l1-2-minimisation to guarantee the robust signal recovery. The obtained condition is proved to be much better than the state-of-the-art ones for almost all parameters k.
引用
收藏
页码:1199 / 1200
页数:2
相关论文
共 50 条
  • [1] Sharp sufficient condition of block signal recovery via l2/l1-minimisation
    Huang, Jianwen
    Wang, Jianjun
    Wang, Wendong
    Zhang, Feng
    [J]. IET SIGNAL PROCESSING, 2019, 13 (05) : 495 - 505
  • [2] An Improved Sufficient Condition for Sparse Signal Recovery With Minimization of L1-L2
    He, Zihao
    He, Hongyu
    Liu, Xiaoli
    Wen, Jinming
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 907 - 911
  • [3] An improved sufficient condition for robust l∞ -: Stability of systems with repeated perturbations
    Cadotte, P
    Michalska, H
    Boulet, B
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 3409 - 3414
  • [4] Improved Sufficient Condition for l1 - l2-Minimization on Cumulative Coherence
    Shi, Hongyan
    Wang, Jiangtao
    [J]. IEEE ACCESS, 2024, 12 : 89707 - 89712
  • [5] A necessary and sufficient condition for sparse vector recovery via l1 - l2 minimization
    Bi, Ning
    Tang, Wai-Shing
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 : 337 - 350
  • [6] A necessary and sufficient condition for exact sparse recovery by l1 minimization
    Dossal, Charles
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 117 - 120
  • [7] A new sufficient condition for sparse vector recovery via l1 - l2 local minimization
    Bi, Ning
    Tan, Jun
    Tang, Wai-Shing
    [J]. ANALYSIS AND APPLICATIONS, 2021, 19 (06) : 1019 - 1031
  • [8] Block-sparse signal recovery via λ2/λ1-2minimisation method
    Wang, Wendong
    Wang, Jianjun
    Zhang, Zili
    [J]. IET SIGNAL PROCESSING, 2018, 12 (04) : 422 - 430
  • [9] An improved sufficient condition for robust D-stability of uncertain systems
    Lee, Hung-Jen
    Chen, Hong-Wei
    Xie, Wen-Jian
    Liu, Yung-Sheng
    Fang, Chun-Hsiung
    [J]. 3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, 2006, : 192 - +
  • [10] Robust signal recovery for l 1-2 minimization via prior support information
    Zhang, Jing
    Zhang, Shuguang
    Wang, Wendong
    [J]. INVERSE PROBLEMS, 2021, 37 (11)