An Improved Sufficient Condition for Sparse Signal Recovery With Minimization of L1-L2

被引:11
|
作者
He, Zihao [1 ]
He, Hongyu [1 ]
Liu, Xiaoli [1 ]
Wen, Jinming [1 ,2 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[2] Pazhou Lab, Guangzhou 510330, Peoples R China
关键词
Sparse signal recovery; mutual coherence; l(1) - l(2)-minimization; UNDERDETERMINED SYSTEMS; LINEAR-EQUATIONS; STABLE RECOVERY;
D O I
10.1109/LSP.2022.3158839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The l(1) - l(2)-minimization is widely used to stably recover a K-sparse signal x from its low dimensional measurements y = Ax + v, where A is a measurement matrix and v is a noise vector. In this paper, we show that if the mutual coherence mu of A satifies mu < 4K-1-root 8K+1/8 K-2-8 K then any K-sparse signal x can be stably recovered via the l(1) - l(2)-minimization. As far as we know, this is the best mutual coherence based sufficient condition of stably recovering K-sparse signals with the l(1) - l(2)-minimization.
引用
收藏
页码:907 / 911
页数:5
相关论文
共 50 条
  • [1] UNCONSTRAINED l1-l2 MINIMIZATION FOR SPARSE RECOVERY VIA MUTUAL COHERENCE
    Geng, Pengbo
    Chen, Wengu
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2020, 3 (02): : 65 - 79
  • [2] A necessary and sufficient condition for exact sparse recovery by l1 minimization
    Dossal, Charles
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 117 - 120
  • [3] A necessary and sufficient condition for sparse vector recovery via l1 - l2 minimization
    Bi, Ning
    Tang, Wai-Shing
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 : 337 - 350
  • [4] A new sufficient condition for sparse vector recovery via l1 - l2 local minimization
    Bi, Ning
    Tan, Jun
    Tang, Wai-Shing
    [J]. ANALYSIS AND APPLICATIONS, 2021, 19 (06) : 1019 - 1031
  • [5] Improved sufficient condition of l1-2-minimisation for robust signal recovery
    Wang, Wendong
    Wang, Jianjun
    [J]. ELECTRONICS LETTERS, 2019, 55 (22) : 1199 - 1200
  • [6] On verifiable sufficient conditions for sparse signal recovery via l1 minimization
    Juditsky, Anatoli
    Nemirovski, Arkadi
    [J]. MATHEMATICAL PROGRAMMING, 2011, 127 (01) : 57 - 88
  • [7] Sorted L1/L2 Minimization for Sparse Signal Recovery
    Wang, Chao
    Yan, Ming
    Yu, Junjie
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [8] Improved Sufficient Condition for l1 - l2-Minimization on Cumulative Coherence
    Shi, Hongyan
    Wang, Jiangtao
    [J]. IEEE ACCESS, 2024, 12 : 89707 - 89712
  • [9] Sparse signal recovery via l1 minimization
    Romberg, Justin K.
    [J]. 2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 213 - 215
  • [10] SPARSE APPROXIMATION USING l1-l2 MINIMIZATION AND ITS APPLICATION TO STOCHASTIC COLLOCATION
    Yan, Liang
    Shin, Yeonjong
    Xiu, Dongbin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01): : A229 - A254