Texture classification using invariant features of local textures

被引:6
|
作者
Janney, P. [1 ]
Geers, G. [2 ]
机构
[1] Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2032, Australia
[2] NICTA, Sydney, NSW 2032, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1049/iet-ipr.2008.0229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the authors present a texture descriptor algorithm called invariant features of local textures (IFLT). IFLT generates scale, rotation and (essentially) illumination invariant descriptors from a small neighbourhood of pixels around a centre pixel or a texture patch. Texture classification experiments were carried out on the Brodatz, Outex and KTH-TIPS2 databases. Demonstrated texture classification accuracy exceeds the previously published state of the art at a significantly lower computational cost. Experiments also suggests that IFLT descriptors are in a sense intuitive texture descriptors.
引用
收藏
页码:158 / 171
页数:14
相关论文
共 50 条
  • [21] Texture classification using the rotational-invariant local symmetric tetra pattern
    Suruliandi, A.
    Sinduja, A.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (04)
  • [22] Rotation Invariant Local Frequency Descriptors for Texture Classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2409 - 2419
  • [23] INVARIANT DESCRIPTORS OF SONAR TEXTURES FROM SPATIAL STATISTICS OF LOCAL FEATURES
    Nguyen, Huu-Giao
    Fablet, Ronan
    Boucher, Jean-Marc
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1674 - 1677
  • [24] Rotation Invariant Texture Classification Using Ellipse Invariant Algorithm
    Yao, Chih-Chia
    Lee, Kang
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 2956 - 2961
  • [25] Scale invariant texture analysis using multi-scale local autocorrelation features
    Kang, Y
    Morooka, K
    Nagahashi, H
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 363 - 373
  • [26] Texture classification with combined rotation and scale invariant wavelet features
    Muneeswaran, K
    Ganesan, L
    Arumugam, S
    Soundar, KR
    PATTERN RECOGNITION, 2005, 38 (10) : 1495 - 1506
  • [27] Noise robust and rotation invariant entropy features for texture classification
    Mohammad Hossein Shakoor
    Farshad Tajeripour
    Multimedia Tools and Applications, 2017, 76 : 8031 - 8066
  • [28] Texture classification by Rotational Invariant DCT Masks (RIDCTM) features
    Ray, T.
    Dutta, Pranab K.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 2041 - 2044
  • [29] Haralick Texture and Invariant Moments Features for Breast Cancer Classification
    Yasiran, Siti Salmah
    Salleh, Shaharuddin
    Mahmud, Rozi
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [30] Invariant and adaptive geometrical texture features for defect detection and classification
    Rohrmus, DR
    PATTERN RECOGNITION, 2005, 38 (10) : 1546 - 1559