Texture classification using invariant features of local textures

被引:6
|
作者
Janney, P. [1 ]
Geers, G. [2 ]
机构
[1] Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2032, Australia
[2] NICTA, Sydney, NSW 2032, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1049/iet-ipr.2008.0229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the authors present a texture descriptor algorithm called invariant features of local textures (IFLT). IFLT generates scale, rotation and (essentially) illumination invariant descriptors from a small neighbourhood of pixels around a centre pixel or a texture patch. Texture classification experiments were carried out on the Brodatz, Outex and KTH-TIPS2 databases. Demonstrated texture classification accuracy exceeds the previously published state of the art at a significantly lower computational cost. Experiments also suggests that IFLT descriptors are in a sense intuitive texture descriptors.
引用
收藏
页码:158 / 171
页数:14
相关论文
共 50 条
  • [1] Invariant features of Local Textures - a rotation invariant local texture descriptor
    Janney, Pranam
    Yu, Zhenghua
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2838 - +
  • [2] Texture classification using invariant ranklet features
    Masotti, Matteo
    Campanini, Renato
    PATTERN RECOGNITION LETTERS, 2008, 29 (14) : 1980 - 1986
  • [3] TEXTURE CLASSIFICATION USING COLOR LOCAL TEXTURE FEATURES
    Arivazhagan, S.
    Benitta, R.
    INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION (ICSIPR 2013), 2013, : 220 - 223
  • [4] Rotation invariant texture classification using Gabor phase features
    Manthalkar, R
    Biswas, PK
    IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 199 - 204
  • [5] Classification of Textures for Autonomous Cleaning Robots Based on the GLCM and Statistical Local Texture Features
    Seul, Andrzej
    Okarma, Krzysztof
    ARTIFICIAL INTELLIGENCE AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 764 : 405 - 414
  • [6] Rotation-Invariant Texture Classification Using Circular Gabor Wavelets Based Local and Global Features
    Yin Qingbo
    Kim, Jong Nam
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (04): : 646 - 648
  • [7] Texture Classification Using Rotation- and Scale-Invariant Gabor Texture Features
    Riaz, Farhan
    Hassan, Ali
    Rehman, Saad
    Qamar, Usman
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (06) : 607 - 610
  • [8] New rotaion invariant features for texture classification
    Mahersia, H.
    Hamrouni, K.
    2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, 2008, : 687 - 690
  • [9] Rotation invariant roughness features for texture classification
    Charalampidis, D
    Kasparis, T
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3672 - 3675
  • [10] Texture classification using orientation-invariant wavelet packet features
    Chi-Man, P
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS I AND II, 2001, : 563 - +