Development of One-dimensional Fractional-order Two-Group Models for Nuclear Reactor

被引:0
|
作者
Vyawahares, Vishwesh A. [1 ]
Nataraj, P. S. V. [2 ]
机构
[1] Ramrao Adik Inst Technol, Dept Elect Engn, Nerul 400706, Navi Mumbai, India
[2] Indian Inst Technol, IDP Syst & Control Engn, Bombay 400076, Maharashtra, India
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 01期
关键词
Nuclear Reactor; Neutron Transport; Two-Group Energy Model; Fractional-order Modeling;
D O I
10.1016/j.ifacol.2016.03.063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with fractional-order modeling of neutron transport in a nuclear reactor considering the energy dependence of neutrons. The paper reports, using, two energy group framework, the development of two novel fractional ordermodels: Fractional-order Two Group Telegraph-Subdiffusion Model and Fractional-order Two-Group Subdiffusion klodel. The models are developed with one-dimensional space consideration. These models are in the form of coupled, linear partial differential equations representing the movement of fast and thermal neutrons. The proposed models can he thought as more faithful and realistic representations of moven tent of neutrons in a heterogeneous core of unclear reactor. (c) 2016, IFAC (International Federation of Automatic. Control) Hosting, by Elsevier Ltd. All rights reserved.
引用
收藏
页码:260 / 265
页数:6
相关论文
共 50 条
  • [1] Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
    Perdikaris, Paris
    Karniadakis, George Em
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (05) : 1012 - 1023
  • [2] Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
    Paris Perdikaris
    George Em. Karniadakis
    [J]. Annals of Biomedical Engineering, 2014, 42 : 1012 - 1023
  • [3] Nuclear reactor with subdiffusive neutron transport: development of linear fractional-order models
    Vyawahare V.A.
    Nataraj P.S.V.
    Espinosa-Paredes G.
    Cázares-Ramírez R.-I.
    [J]. International Journal of Dynamics and Control, 2017, 5 (4) : 1182 - 1200
  • [4] Drag coefficient in one-dimensional two-group two-fluid model
    Liu, Yang
    Hibiki, Takashi
    Sun, Xiaodong
    Ishii, Mamoru
    Kelly, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (05) : 1402 - 1410
  • [5] One-dimensional haemodynamic model of a vascular network with fractional-order viscoelasticity
    Yanbarisov, Ruslan
    Gamilov, Timur
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (05) : 323 - 339
  • [6] Fractional-order modeling of neutron transport in a nuclear reactor
    Vyawahare, Vishwesh A.
    Nataraj, P. S. V.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (23) : 9747 - 9767
  • [7] Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique
    Srinivasa, Kumbinarasaiah
    Rezazadeh, Hadi
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (06) : 767 - 780
  • [8] Dynamic response of a one-dimensional hexagonal quasicrystal rod in the framework of fractional-order thermoelasticity
    Li, Ying
    Zhou, Yan-Bin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (10):
  • [9] Solution of nonlinear fractional-order models of nuclear reactor with parallel computing: Implementation on GPU platform
    Keluskar, Yugesh C.
    Singhaniya, Navin G.
    Vyawahare, Vishwesh A.
    Jage, Chaitanya S.
    Patil, Parag
    Espinosa-Paredes, Gilberto
    [J]. ANNALS OF NUCLEAR ENERGY, 2024, 195
  • [10] Development and analysis of some versions of the fractional-order point reactor kinetics model for a nuclear reactor with slab geometry
    Vyawahare, Vishwesh A.
    Nataraj, P. S. V.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (07) : 1840 - 1856