One-dimensional haemodynamic model of a vascular network with fractional-order viscoelasticity

被引:0
|
作者
Yanbarisov, Ruslan [1 ,2 ,3 ]
Gamilov, Timur [1 ,3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[2] Sechenov Univ, Moscow 119992, Russia
[3] Sirius Univ Sci & Technol, Soci 354340, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[5] IM Sechenov First Moscow State Med Univ, Sechenov Univ, World Class Res Ctr Digital Biodesign & Personaliz, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Haemodynamics; one-dimensional blood flow; fractional derivative; viscoelasticity; vessel wall; PULSE-WAVE PROPAGATION; HUMAN ARTERIAL NETWORK; BLOOD-FLOW; BOUNDARY-CONDITIONS; AORTA; 1-D; CONVOLUTION; SIMULATIONS;
D O I
10.1515/rnam-2023-0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a computational framework for a one-dimensional haemodynamic model with the arterial walls described by the fractional-order viscoelastic material constitutive law. This framework is used to compare blood flow characteristics for simulations with elastic and fractional-order viscoelastic walls. We use three well-established benchmark tests: a single pulse wave in a long vessel, flow in a 37-segment network of elastic tubes, and flow in anatomically detailed arterial network consisting of 61 arterial segments. All results for elastic model are in a good agreement with analytical solutions, in vitro data and other well-established approaches. Fractional-order model demonstrates noticeable differences in pulse wave propagation speed and minor differences in pressure and flow profiles. Differences in profiles are negligible in major vessels, but more profound in vessels beyond the third or fourth generation.
引用
收藏
页码:323 / 339
页数:17
相关论文
共 50 条
  • [1] Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
    Paris Perdikaris
    George Em. Karniadakis
    [J]. Annals of Biomedical Engineering, 2014, 42 : 1012 - 1023
  • [2] Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
    Perdikaris, Paris
    Karniadakis, George Em
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (05) : 1012 - 1023
  • [3] Fractional-Order Interval Parameter State Space Model of the One-Dimensional Heat Transfer Process
    Oprzedkiewicz, Krzysztof
    [J]. ENERGIES, 2024, 17 (14)
  • [4] MODEL FOR ONE-DIMENSIONAL, NONLINEAR VISCOELASTICITY
    MACCAMY, RC
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1977, 35 (01) : 21 - 33
  • [5] A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity
    Parisis, Kostas
    Dimosthenis, Vlasis
    Kouris, Leonidas
    Konstantinidis, Avraam
    Aifantis, Elias C.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [6] Fractional-Order Windkessel Boundary Conditions in a One-Dimensional Blood Flow Model for Fractional Flow Reserve (FFR) Estimation
    Gamilov, Timur
    Yanbarisov, Ruslan
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [7] Fractional calculus in one-dimensional isotropic thermo-viscoelasticity
    Ezzat, Magdy A.
    El-Karamany, Ahmed S.
    El-Bary, Alaa A.
    Fayik, Mohsen A.
    [J]. COMPTES RENDUS MECANIQUE, 2013, 341 (07): : 553 - 566
  • [8] Development of One-dimensional Fractional-order Two-Group Models for Nuclear Reactor
    Vyawahares, Vishwesh A.
    Nataraj, P. S. V.
    [J]. IFAC PAPERSONLINE, 2016, 49 (01): : 260 - 265
  • [9] Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique
    Srinivasa, Kumbinarasaiah
    Rezazadeh, Hadi
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (06) : 767 - 780
  • [10] Dynamic response of a one-dimensional hexagonal quasicrystal rod in the framework of fractional-order thermoelasticity
    Li, Ying
    Zhou, Yan-Bin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (10):