A Spatio-Temporal Signal Dimension Reduction Method for Integrated Localization and Sensing

被引:0
|
作者
Li, Yi [1 ]
Zhao, Hanying [1 ]
Shen, Yuan [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PULSE-COMPRESSION; RADAR; NETWORK;
D O I
10.1109/MELECON53508.2022.9843131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of millimeter-wave frequency band and large-scale antenna arrays offers great opportunities for high-accuracy localization and sensing, but at the cost of large communication overheads, big memory, and complex computation. In this context, effectively reducing signal dimension to alleviate resource consumption is essential in practice. In this paper, we propose a spatio-temporal signal dimension reduction method, which reduces signal dimensions without information loss for integrated localization and sensing. Different from the existing reduction methods only considering one domain, we reduce both the temporal and the spatial signal dimensions and reveal the compressible property of the array signals.
引用
收藏
页码:290 / 294
页数:5
相关论文
共 50 条
  • [41] Spatio-temporal wavelet transforms for digital signal analysis
    Leduc, JP
    SIGNAL PROCESSING, 1997, 60 (01) : 23 - 41
  • [42] Effective spatio-temporal analysis of remote sensing data
    Zhang, Zhongnan
    Wu, Weili
    Huang, Yaochun
    PROGRESS IN WWW RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2008, 4976 : 584 - 589
  • [43] From Proximity Sensing to Spatio-Temporal Social Graphs
    Martella, Claudio
    Dobson, Matthew
    van Halteren, Aart
    van Steen, Maarten
    2014 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2014, : 78 - 87
  • [44] GradTac: Spatio-Temporal Gradient Based Tactile Sensing
    Ganguly, Kanishka
    Mantripragada, Pavan
    Parameshwara, Chethan M.
    Fermueller, Cornelia
    Sanket, Nitin J.
    Aloimonos, Yiannis
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [45] Spatio-Temporal Compressive Sensing and Internet Traffic Matrices
    Zhang, Yin
    Roughan, Matthew
    Willinger, Walter
    Qiu, Lili
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2009, 39 (04) : 267 - 278
  • [46] Separable spatio-temporal kriging for fast virtual sensing
    Miniato, Michele Lambardi di San
    Bellio, Ruggero
    Grassetti, Luca
    Vidoni, Paolo
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (05) : 806 - 829
  • [47] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [48] High spatio-temporal resolution video with compressed sensing
    Koller, Roman
    Schmid, Lukas
    Matsuda, Nathan
    Niederberger, Thomas
    Spinoulas, Leonidas
    Cossairt, Oliver
    Schuster, Guido
    Katsaggelos, Aggelos K.
    OPTICS EXPRESS, 2015, 23 (12): : 15992 - 16007
  • [49] Distributed spatio-temporal spectrum sensing: An experimental study
    Raman, Chandrasekharan
    Kalyanam, Janani
    Seskar, Ivan
    Mandayam, Narayan
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 2063 - +
  • [50] Spatio-Temporal Compressive Sensing and Internet Traffic Matrices
    Zhang, Yin
    Roughan, Matthew
    Willinger, Walter
    Qiu, Lili
    SIGCOMM 2009, 2009, : 267 - 278