Hormander Type Theorem for Fourier Multipliers with Optimal Smoothness on Hardy Spaces of Arbitrary Number of Parameters

被引:9
|
作者
Chen, Jiao [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Hormander multiplier; minimal smoothness condition; Littlewood-Paley's inequality; multi-parameter Hardy H-p spaces; multi-parameter Sobolev spaces; SINGULAR-INTEGRALS; COVERING LEMMA; HP-THEORY; PRODUCT; OPERATORS;
D O I
10.1007/s10114-017-6526-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k >= 3 using the multi-parameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k >= 3: T(m)f(x(1), x(2), x(3)) = 1/(2 pi)(n1+n2+n3) integral(Rn1 x Rn2 x Rn3) m(xi)(f) over cap(xi)e(2 pi ix.xi)d xi where x = (x(1), x(2), x(3)) is an element of R-n1 x R-n2 x R-n3 and xi=(xi(1), xi(2), xi(3)) is an element of R-n1 x R-n2 x R-n3. One of our main results is the following: Assume that m(xi) is a function on Rn1+n2+n3 satisfying sup(j, k, l is an element of Z) parallel to m(j, k, l) parallel to(W(s1,s2,s3)) < infinity with s(i) > n(i)(1/p - 1/2) for 1 <= i <= 3. Then T (m) is bounded from H-p (R-n1 x R-n2 x R-n3) to H-p(R-n1 x R-n2 x R-n3) for all 0 < p <= 1 and parallel to T-m parallel to H-p -> H-p less than or similar to sup(j, k, l is an element of Z) parallel to m(j, k, l) parallel to (W(s1, s2, s3)). Moreover, the smoothness assumption on s(i) for 1 <= i <= 3 is optimal. Here we have used the notations m(j,k,l) (xi) = m(2 (j)xi(1), 2(k)xi(2), 2(l)xi(3))Psi(xi(1))Psi(xi(2))Psi(xi(3)) and Psi(xi (i) ) is a suitable cut-off function on R-ni for 1 <= i <= 3, and is a three-parameter Sobolev space on R-n1 x R-n2 x R-n3. Because the Fefferman criterion breaks down in three parameters or more, we consider the L-p boundedness of the Littlewood-Paley square function of T(m)f to establish its boundedness on the multi-parameter Hardy spaces.
引用
收藏
页码:1083 / 1106
页数:24
相关论文
共 50 条
  • [41] Operator-Valued Fourier Multipliers on Multi-dimensional Hardy Spaces
    Shangquan BU Department of Mathematical Sciences
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (02) : 293 - 302
  • [42] Operator-valued fourier multipliers on multi-dimensional hardy spaces
    Bu, Shangquan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (02) : 293 - 302
  • [43] On Hankel transformation, convolution operators and multipliers on Hardy type spaces
    Betancor, JJ
    Rodríguez-Mesa, L
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (03) : 687 - 709
  • [44] Fourier Multipliers on Triebel-Lizorkin-Type Spaces
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [45] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [46] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [47] Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups
    Avdispahic, M.
    Memic, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 588 - 595
  • [48] Weak type estimates on certain Hardy spaces for smooth cone type multipliers
    Kim, YC
    Hong, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) : 476 - 497
  • [49] NOTES ON THE HERZ-TYPE HARDY SPACES OF VARIABLE SMOOTHNESS AND INTEGRABILITY
    Drihem, Douadi
    Seghiri, Fakhreddine
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 145 - 165
  • [50] Hormander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces
    Chen, Jiao
    Huang, Liang
    Lu, Guozhen
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (04) : 1047 - 1084