Quantum scanning microscope for cold atoms

被引:10
|
作者
Yang, D. [1 ]
Vasilyev, D. V.
Laflamme, C.
Baranov, M. A.
Zoller, P.
机构
[1] Univ Innsbruck, Ctr Quantum Phys, Fac Math Comp Sci & Phys, A-6020 Innsbruck, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
CAVITY; DYNAMICS; PHOTONS; SYSTEMS; LIMIT;
D O I
10.1103/PhysRevA.98.023852
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed theoretical description of a recently proposed atomic scanning microscope in a cavity QED setup [D. Yang et al., Phys. Rev. Lett. 120, 133601 (2018)]. The microscope continuously observes atomic densities with optical subwavelength resolution in a nondestructive way. The superresolution is achieved by engineering an internal atomic dark state with a sharp spatial variation of population of a ground level dispersively coupled to the cavity field. Thus, the atomic position encoded in the internal state is revealed as a phase shift of the light reflected from the cavity in a homodyne experiment. Our theoretical description of the microscope operation is based on the stochastic master equation describing the conditional time evolution of the atomic system under continuous observation as a competition between dynamics induced by the Hamiltonian of the system, decoherence effects due to atomic spontaneous decay, and the measurement backaction. Within our approach we relate the observed homodyne current with a local atomic density and discuss the emergence of a quantum nondemolition measurement regime allowing continuous observation of spatial densities of quantum motional eigenstates without measurement backaction in a single experimental run.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Experiments on quantum coherence with cold atoms
    W. Gawlik
    A. Wojciechowski
    Optics and Spectroscopy, 2011, 111 : 626 - 632
  • [22] Quantum chaos with cold cesium atoms
    Oskay, WH
    Steck, DA
    Klappauf, BG
    Raizen, MG
    LASER PHYSICS, 1999, 9 (01) : 265 - 269
  • [23] Experiments on quantum coherence with cold atoms
    Gawlik, Wojciech
    Wojciechowski, Adam
    QUANTUM DYNAMICS AND INFORMATION, 2011, : 114 - 127
  • [24] Trapping cold atoms by quantum reflection
    Jurisch, Alexander
    Rost, Jan-Michael
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [25] Quantum Computers Based on Cold Atoms
    Beterov, I. I.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (04) : 317 - 324
  • [26] Quantum Chaos in the Dynamics of Cold Atoms
    Ghose, S.
    Chaudhury, S.
    Smith, A.
    Anderson, B.
    Jessen, P.
    WOMEN IN PHYSICS, 2013, 1517 : 205 - 205
  • [27] Topological quantum matter with cold atoms
    Zhang, Dan-Wei
    Zhu, Yan-Qing
    Zhao, Y. X.
    Yan, Hui
    Zhu, Shi-Liang
    ADVANCES IN PHYSICS, 2018, 67 (04) : 253 - 402
  • [28] Quantum Machine Using Cold Atoms
    Ponomarev, Alexey V.
    Denisov, Sergey
    Haenggi, Peter
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (11) : 2441 - 2447
  • [29] QUANTUM CHEMICAL MODELING OF THE SCANNING TUNNELING MICROSCOPE
    BADZIAG, P
    VERWOERD, WS
    SURFACE SCIENCE, 1993, 285 (03) : 145 - 156
  • [30] SIMPLE COLD STAGE FOR SCANNING ELECTRON-MICROSCOPE
    MCALEAR, JH
    FUCCI, R
    GERMINARIO, L
    EXPERIMENTAL CELL RESEARCH, 1972, 71 (01) : 235 - +