An Infinite Antichain of Planar Tanglegrams

被引:0
|
作者
Czabarka, Eva [1 ,2 ]
Smith, Stephen J. [1 ]
Szekely, Laszlo A. [1 ,2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
基金
美国国家科学基金会;
关键词
Binary tree; Caterpillar; Induced subtree; Tanglegram; Planar tanglegram; Induced subtanglegram; Permutation; Permutation pattern; Partial order; Well-quasi-ordering; Antichain; GRAPH MINORS; TREES;
D O I
10.1007/s11083-021-09563-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contrary to the expectation arising from the tanglegram Kuratowski theorem of Czabarka et al. (SIAM J. Discrete Math. 31(3), 1732-1750, 2017), we construct an infinite antichain of planar tanglegrams with respect to the induced subtanglegram partial order. R.E. Tarjan, R. Laver, D.A. Spielman and M. Bona, and possibly others, showed that the partially ordered set of finite permutations ordered by deletion of entries contains an infinite antichain, i.e., there exists an infinite collection of permutations, such that none of them contains another as a pattern. Our construction adds a twist to the construction of Spielman and Bona (Electr. J. Comb. 7, N2, 2000).
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [31] A Planar Calculus for Infinite Index Subfactors
    Penneys, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) : 595 - 648
  • [32] A Planar Calculus for Infinite Index Subfactors
    David Penneys
    Communications in Mathematical Physics, 2013, 319 : 595 - 648
  • [33] PROPULSION OF AN INFINITE PLANAR CILIATED SURFACE
    KELLER, SR
    WU, TY
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (10): : 1155 - 1155
  • [34] Spanning paths in infinite planar graphs
    Dean, N
    Thomas, R
    Yu, XX
    JOURNAL OF GRAPH THEORY, 1996, 23 (02) : 163 - 174
  • [35] Hamilton circles in infinite planar graphs
    Cui, Qing
    Wang, Jian
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 110 - 138
  • [36] The uniform infinite cubic planar graph
    Stufler, Benedikt
    BERNOULLI, 2023, 29 (04) : 2902 - 2926
  • [37] PLANAR AND INFINITE HYPOHAMILTONIAN AND HYPOTRACEABLE GRAPHS
    THOMASSEN, C
    DISCRETE MATHEMATICS, 1976, 14 (04) : 377 - 389
  • [38] Percolation on uniform infinite planar maps
    Menard, Laurent
    Nolin, Pierre
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [39] NO INFINITE SPIN FOR PLANAR TOTAL COLLISION
    Moeckel, Richard
    Montgomery, Richard
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 38 (01) : 225 - 241
  • [40] A characterization of infinite planar primitive graphs
    Watkins, ME
    Graver, JE
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) : 87 - 104