An Infinite Antichain of Planar Tanglegrams

被引:0
|
作者
Czabarka, Eva [1 ,2 ]
Smith, Stephen J. [1 ]
Szekely, Laszlo A. [1 ,2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
基金
美国国家科学基金会;
关键词
Binary tree; Caterpillar; Induced subtree; Tanglegram; Planar tanglegram; Induced subtanglegram; Permutation; Permutation pattern; Partial order; Well-quasi-ordering; Antichain; GRAPH MINORS; TREES;
D O I
10.1007/s11083-021-09563-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contrary to the expectation arising from the tanglegram Kuratowski theorem of Czabarka et al. (SIAM J. Discrete Math. 31(3), 1732-1750, 2017), we construct an infinite antichain of planar tanglegrams with respect to the induced subtanglegram partial order. R.E. Tarjan, R. Laver, D.A. Spielman and M. Bona, and possibly others, showed that the partially ordered set of finite permutations ordered by deletion of entries contains an infinite antichain, i.e., there exists an infinite collection of permutations, such that none of them contains another as a pattern. Our construction adds a twist to the construction of Spielman and Bona (Electr. J. Comb. 7, N2, 2000).
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [1] An Infinite Antichain of Planar Tanglegrams
    Éva Czabarka
    Stephen J. Smith
    László A. Székely
    Order, 2022, 39 : 45 - 54
  • [2] A NOTE ON INFINITE ANTICHAIN DENSITY
    Balister, Paul
    Powierski, Emil
    Scott, Alex
    Tan, Jane
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 573 - 577
  • [3] Sampling planar tanglegrams and pairs of disjoint triangulations
    Black, Alexander E.
    Liu, Kevin
    McDonough, Alex
    Nelson, Garrett
    Wigal, Michael C.
    Yin, Mei
    Yoo, Youngho
    ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [4] A CHAIN COMPLETE POSET WITH NO INFINITE ANTICHAIN HAS A FINITE CORE
    LI, BY
    MILNER, EC
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (01): : 55 - 63
  • [5] No Finite–Infinite Antichain Duality in the Homomorphism Poset of Directed Graphs
    Péter L. Erdős
    Lajos Soukup
    Order, 2010, 27 : 317 - 325
  • [6] No Finite-Infinite Antichain Duality in the Homomorphism Poset of Directed Graphs
    Erdos, Peter L.
    Soukup, Lajos
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2010, 27 (03): : 317 - 325
  • [7] FROM FINITE POSETS TO CHAIN COMPLETE POSETS HAVING NO INFINITE ANTICHAIN
    LI, BY
    MILNER, EC
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (02): : 159 - 171
  • [8] ANTICHAIN SEQUENCES
    CAMERON, K
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (03): : 249 - 255
  • [9] ANTICHAIN CUTSETS
    RIVAL, I
    ZAGUIA, N
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 1 (03): : 235 - 247
  • [10] Antichain Graphs
    Shahistha
    Bhat, K Arathi
    G, Sudhakara
    IAENG International Journal of Applied Mathematics, 2021, 51 (03) : 1 - 7