The hierarchical-likelihood approach to autoregressive stochastic volatility models

被引:5
|
作者
Lee, Woojoo [1 ]
Lim, Johan [1 ]
Lee, Youngjo [1 ]
del Castillo, Joan [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
[2] Univ Autonoma Barcelona, Barcelona 08192, Spain
关键词
Autoregressive stochastic volatility model; Hierarchical generalized linear model; Hierarchical likelihood; Sparse matrix computation; Prediction; APPROXIMATION; OPTIONS;
D O I
10.1016/j.csda.2010.04.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many volatility models used in financial research belong to a class of hierarchical generalized linear models with random effects in the dispersion. Therefore, the hierarchical-likelihood (h-likelihood) approach can be used. However, the dimension of the Hessian matrix is often large, so techniques of sparse matrix computation are useful to speed up the procedure of computing the inverse matrix. Using numerical studies we show that the h-likelihood approach gives better long-term prediction for volatility than the existing MCMC method, while the MCMC method gives better short-term prediction. We show that the h-likelihood approach gives comparable estimations of fixed parameters to those of existing methods. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 260
页数:13
相关论文
共 50 条
  • [31] A flexible and automated likelihood based framework for inference in stochastic volatility models
    Skaug, Hans J.
    Yu, Jun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 642 - 654
  • [32] A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models
    Laurini, Marcio Poletti
    [J]. JOURNAL OF TIME SERIES ECONOMETRICS, 2013, 5 (02) : 193 - 229
  • [33] A Stochastic Simulation Approach to Model Selection for Stochastic Volatility Models
    Li, Yong
    Ni, Zhong-Xin
    Lin, Jin-Guan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (07) : 1043 - 1056
  • [34] Estimation of time-varying autoregressive stochastic volatility models with stable innovations
    Mueller, Gernot
    Uhl, Sebastian
    [J]. STATISTICS AND COMPUTING, 2021, 31 (03)
  • [35] The Wishart Autoregressive process of multivariate stochastic volatility
    Gourieroux, C.
    Jasiak, J.
    Sufana, R.
    [J]. JOURNAL OF ECONOMETRICS, 2009, 150 (02) : 167 - 181
  • [36] On a buffered threshold autoregressive stochastic volatility model
    Wang, Qingzheng
    Yiu, Ka-Fai Cedric
    Wong, Heung
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (06) : 974 - 996
  • [37] Simulated likelihood inference for stochastic volatility models using continuous particle filtering
    Michael K. Pitt
    Sheheryar Malik
    Arnaud Doucet
    [J]. Annals of the Institute of Statistical Mathematics, 2014, 66 : 527 - 552
  • [38] Simulated likelihood inference for stochastic volatility models using continuous particle filtering
    Pitt, Michael K.
    Malik, Sheheryar
    Doucet, Arnaud
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (03) : 527 - 552
  • [39] Calibration of stochastic volatility models: A Tikhonov regularization approach
    Dai, Min
    Tang, Ling
    Yue, Xingye
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2016, 64 : 66 - 81
  • [40] Factor stochastic volatility in mean models: A GMM approach
    Doz, Catherine
    Renault, Eric
    [J]. ECONOMETRIC REVIEWS, 2006, 25 (2-3) : 275 - 309