The hierarchical-likelihood approach to autoregressive stochastic volatility models

被引:5
|
作者
Lee, Woojoo [1 ]
Lim, Johan [1 ]
Lee, Youngjo [1 ]
del Castillo, Joan [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
[2] Univ Autonoma Barcelona, Barcelona 08192, Spain
关键词
Autoregressive stochastic volatility model; Hierarchical generalized linear model; Hierarchical likelihood; Sparse matrix computation; Prediction; APPROXIMATION; OPTIONS;
D O I
10.1016/j.csda.2010.04.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many volatility models used in financial research belong to a class of hierarchical generalized linear models with random effects in the dispersion. Therefore, the hierarchical-likelihood (h-likelihood) approach can be used. However, the dimension of the Hessian matrix is often large, so techniques of sparse matrix computation are useful to speed up the procedure of computing the inverse matrix. Using numerical studies we show that the h-likelihood approach gives better long-term prediction for volatility than the existing MCMC method, while the MCMC method gives better short-term prediction. We show that the h-likelihood approach gives comparable estimations of fixed parameters to those of existing methods. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 260
页数:13
相关论文
共 50 条