Embedded Deep Learning for Sleep Staging

被引:0
|
作者
Turetken, Engin [1 ]
Van Zaen, Jerome [2 ]
Delgado-Gonzalo, Ricard [3 ]
机构
[1] CSEM, Embedded Vis Syst Grp, Neuchatel, Switzerland
[2] CSEM, Signal Proc Grp, Neuchatel, Switzerland
[3] CSEM, Embedded Software Grp, Neuchatel, Switzerland
关键词
CNN; RNN; deep learning; embedded; SoC; sleep; polysomnography; e-health; m-health;
D O I
10.1109/SDS.2019.00005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapidly-advancing technology of deep learning (DL) into the world of the Internet of Things (IoT) has not fully entered in the fields of m-Health yet. Among the main reasons are the high computational demands of DL algorithms and the inherent resource-limitation of wearable devices. In this paper, we present initial results for two deep learning architectures used to diagnose and analyze sleep patterns, and we compare them with a previously presented hand-crafted algorithm. The algorithms are designed to be reliable for consumer healthcare applications and to be integrated into low-power wearables with limited computational resources.
引用
收藏
页码:95 / 96
页数:2
相关论文
共 50 条
  • [21] Author Correction: Deep learning for automated sleep staging using instantaneous heart rate
    Niranjan Sridhar
    Ali Shoeb
    Philip Stephens
    Alaa Kharbouch
    David Ben Shimol
    Joshua Burkart
    Atiyeh Ghoreyshi
    Lance Myers
    npj Digital Medicine, 3
  • [22] Deep Learning Enables Accurate Automatic Sleep Staging Based on Ambulatory Forehead EEG
    Leino, Akseli
    Korkalainen, Henri
    Kalevo, Laura
    Nikkonen, Sami
    Kainulainen, Samu
    Ryan, Alexander
    Duce, Brett
    Sipila, Kirsi
    Ahlberg, Jari
    Sahlman, Johanna
    Miettinen, Tomi
    Westeren-Punnonen, Susanna
    Mervaala, Esa
    Toyras, Juha
    Myllymaa, Sami
    Leppanen, Timo
    Myllymaa, Katja
    IEEE ACCESS, 2022, 10 : 26554 - 26566
  • [23] DEEP LEARNING ENABLES ACCURATE AUTOMATIC SLEEP STAGING BASED ON AMBULATORY FOREHEAD EEG
    Leino, A.
    Korkalainen, H.
    Kalevo, L.
    Nikkonen, S.
    Kainulainen, S.
    Ryan, A.
    Duce, B.
    Sipila, K.
    Ahlberg, J.
    Sahlman, J.
    Miettinen, T.
    Westeren-Punnonen, S.
    Mervaala, E.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Myllymaa, K.
    SLEEP MEDICINE, 2022, 100 : S293 - S294
  • [24] DEEP LEARNING ENABLES ACCURATE SLEEP STAGING BASED ON A SINGLE FRONTAL EEG CHANNEL
    Korkalainen, H.
    Aakko, J.
    Nikkonen, S.
    Kainulainen, S.
    Leino, A.
    Duce, B.
    Afara, I. O.
    Myllymaa, S.
    Toyras, J.
    Leppanen, T.
    SLEEP MEDICINE, 2019, 64 : S202 - S203
  • [25] DEEP LEARNING ENABLES AUTOMATIC SLEEP STAGING FROM TEXTILE ELECTRODE-BASED HOME SLEEP RECORDINGS
    Rusanen, M.
    Huttunen, R.
    Korkalainen, H.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Sigurdardottir, S.
    Arnardottir, E. S.
    Kainulainen, S.
    SLEEP MEDICINE, 2022, 100 : S294 - S294
  • [26] Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography
    Huttunen, Riku
    Leppanen, Timo
    Duce, Brett
    Oksenberg, Arie
    Myllymaa, Sami
    Toyras, Juha
    Korkalainen, Henri
    SLEEP, 2021, 44 (10)
  • [27] LWSleepNet: A lightweight attention-based deep learning model for sleep staging with singlechannel EEG
    Yang, Chenguang
    Li, Baozhu
    Li, Yamei
    He, Yixuan
    Zhang, Yuan
    DIGITAL HEALTH, 2023, 9
  • [28] Pediatric Automatic Sleep Staging: A Comparative Study of State-of-the-Art Deep Learning Methods
    Phan, Huy
    Mertins, Alfred
    Baumert, Mathias
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (12) : 3612 - 3622
  • [29] SleepPPG-Net: A Deep Learning Algorithm for Robust Sleep Staging From Continuous Photoplethysmography
    Kotzen, Kevin
    Charlton, Peter H.
    Salabi, Sharon
    Amar, Lea
    Landesberg, Amir
    Behar, Joachim A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 924 - 932
  • [30] The Effect of Coupled Electroencephalography Signals in Electrooculography Signals on Sleep Staging Based on Deep Learning Methods
    Zhu, Hangyu
    Fu, Cong
    Shu, Feng
    Yu, Huan
    Chen, Chen
    Chen, Wei
    BIOENGINEERING-BASEL, 2023, 10 (05):