Lensing reconstruction in post-Born cosmic microwave background weak lensing

被引:36
|
作者
Beck, Dominic [1 ]
Fabbian, Giulio [2 ]
Errard, Josquin [1 ]
机构
[1] Univ Paris Diderot, Obs Paris, CNRS IN2P3, AstroParticule & Cosmol,CEA Irfu,Sorbonne Paris C, Paris, France
[2] Univ Paris Saclay, Univ Paris Sud, CNRS UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France
关键词
LARGE-SCALE STRUCTURE; POWER SPECTRUM; SIMULATIONS; BIAS; TEMPERATURE; UNIVERSE; SHEAR; MAPS;
D O I
10.1103/PhysRevD.98.043512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the cosmic microwave background (CMB) lensing potential has established itself by now as a robust way of probing the physics of large-scale structure growth. The most common estimators of the lensing potential are derived under the assumption of Gaussianity of the matter distribution and in the Born approximation of the photon diffusion. In this paper we study the performance of quadratic estimators when applied to realistic sky maps extracted from multiple-lens ray tracing techniques in cosmological N-body simulations. These are expected to model accurately the effects due to the non-Gaussianity of the matter distribution induced by its nonlinearity and the deviation from the Born approximation. We show that both these effects on their own lead to reconstruction biases, but these tend to partially cancel each other when both these effects are considered together. We forecast the impact of these biases on the estimation of cosmological parameters for future high-sensitivity CMB experiments like CMB-S4. We find that the cold dark matter density, Omega(cdm), the optical depth to reionization tau, the amplitude of primordial inflationary perturbations, A(s), and the sum of neutrino masses, M-nu, could be biased at the 1-2 sigma level, if no external data set is used. We also observe a reduction of the bias if external data like baryon acoustic oscillations is included.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Lensing Reconstruction from the Cosmic Microwave Background Polarization with Machine Learning
    Yan, Ye-Peng
    Wang, Guo-Jian
    Li, Si-Yu
    Yan, Yang-Jie
    Xia, Jun-Qing
    ASTROPHYSICAL JOURNAL, 2023, 952 (01):
  • [22] Multiple lensing of the cosmic microwave background anisotropies
    Calabrese, M.
    Carbone, C.
    Fabbian, G.
    Baldi, M.
    Baccigalupi, C.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (03):
  • [23] On the absence of gravitational lensing of the cosmic microwave background
    Lieu, R
    Mittaz, JPD
    ASTROPHYSICAL JOURNAL, 2005, 628 (02): : 583 - 593
  • [24] Detection of gravitational lensing in the cosmic microwave background
    Smith, Kendrick M.
    Zahn, Oliver
    Dore, Olivier
    PHYSICAL REVIEW D, 2007, 76 (04):
  • [25] Correlated gravitational lensing of the cosmic microwave background
    Linder, EV
    ASTRONOMY & ASTROPHYSICS, 1997, 323 (02) : 305 - 311
  • [26] Mass-varying neutrino in light of cosmic microwave background and weak lensing
    La Vacca, G.
    Mota, D. F.
    ASTRONOMY & ASTROPHYSICS, 2013, 560
  • [27] Joint cosmic microwave background and weak lensing analysis: Constraints on cosmological parameters
    Contaldi, CR
    Hoekstra, H
    Lewis, A
    PHYSICAL REVIEW LETTERS, 2003, 90 (22)
  • [28] Detectable signals of post-Born lensing curl B-modes
    Robertson, Mathew
    Fabbian, Giulio
    Carron, Julien
    Lewis, Antony
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (02):
  • [29] Intrinsic alignments in the cross-correlation of cosmic shear and cosmic microwave background weak lensing
    Hall, Alex
    Taylor, Andy
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) : L119 - L123
  • [30] Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data
    Millea, M.
    Daley, C. M.
    Chou, T-L
    Anderes, E.
    Ade, P. A. R.
    Anderson, A. J.
    Austermann, J. E.
    Avva, J. S.
    Beall, J. A.
    Bender, A. N.
    Benson, B. A.
    Bianchini, F.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Chaubal, P.
    Chiang, H. C.
    Citron, R.
    Moran, C. Corbett
    Crawford, T. M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Everett, W.
    Gallicchio, J.
    George, E. M.
    Goeckner-Wald, N.
    Guns, S.
    Gupta, N.
    Halverson, N. W.
    Henning, J. W.
    Hilton, G. C.
    Holder, G. P.
    Holzapfel, W. L.
    Hrubes, J. D.
    Huang, N.
    Hubmayr, J.
    Irwin, K. D.
    Knox, L.
    Lee, A. T.
    Li, D.
    Lowitz, A.
    McMahon, J. J.
    Meyer, S. S.
    Mocanu, L. M.
    Montgomery, J.
    Natoli, T.
    Nibarger, J. P.
    Noble, G.
    Novosad, V
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):