NEW L1-GRADIENT TYPE ESTIMATES OF SOLUTIONS TO ONE-DIMENSIONAL QUASILINEAR PARABOLIC SYSTEMS

被引:1
|
作者
Antontsev, S. N. [1 ]
Diaz, J. I. [2 ]
机构
[1] Univ Lisbon, CMAF, Lisbon, Portugal
[2] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
L-1-gradient estimates; quasilinear parabolic systems; first order hyperbolic systems; LAMINAR HOT GAS; EQUATIONS; SPACE; DISCHARGE; EXISTENCE;
D O I
10.1142/S0219199710003725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general class of one-dimensional parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of the degenerate type. We derive some new L-1-gradient type estimates for its solutions which are uniform in the sense that they do not depend on the coefficients nor on the size of the spatial domain. We also give some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian parabolic type equation and some first order systems of Hamilton-Jacobi or conservation laws type.
引用
收藏
页码:85 / 106
页数:22
相关论文
共 50 条
  • [31] Bifurcation of positive solutions for a one-dimensional indefinite quasilinear Neumann problem
    Lopez-Gomez, Julian
    Omari, Pierpaolo
    Rivetti, Sabrina
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 : 1 - 51
  • [32] INTEGRABILITY OF THE DERIVATIVE OF SOLUTIONS TO A SINGULAR ONE-DIMENSIONAL PARABOLIC PROBLEM
    Nakayasu, Atsushi
    Rybka, Piotr
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (01) : 239 - 257
  • [33] GEOMETRICAL PROPERTIES OF THE SOLUTIONS OF ONE-DIMENSIONAL NONLINEAR PARABOLIC EQUATIONS
    GALAKTIONOV, VA
    VAZQUEZ, JL
    [J]. MATHEMATISCHE ANNALEN, 1995, 303 (04) : 741 - 769
  • [34] CONSERVATIVE SIMILARITY SOLUTIONS OF ONE-DIMENSIONAL AUTONOMOUS PARABOLIC EQUATION
    LEHNIGK, SH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1976, 27 (03): : 385 - 391
  • [35] VERIFICATION OF ASYMPTOTIC SOLUTIONS FOR ONE-DIMENSIONAL NONLINEAR PARABOLIC EQUATIONS
    VAKULENKO, SA
    [J]. MATHEMATICAL NOTES, 1992, 52 (3-4) : 875 - 880
  • [36] New Poisson-Boltzmann type equations: one-dimensional solutions
    Lee, Chiun-Chang
    Lee, Hijin
    Hyon, YunKyong
    Lin, Tai-Chia
    Liu, Chun
    [J]. NONLINEARITY, 2011, 24 (02) : 431 - 458
  • [37] Exact Traveling Wave Solutions of One-Dimensional Parabolic-Parabolic Models of Chemotaxis
    Shubina, M., V
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (03) : 383 - 395
  • [38] ESTIMATES OF SOLUTIONS FOR LINEAR PARABOLIC-SYSTEMS OF DIVERGENT TYPE
    DANILJUK, GI
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 105 - 109
  • [39] Gaussian Estimates for the Solutions of Some One-dimensional Stochastic Equations
    Tien Dung Nguyen
    Privault, Nicolas
    Torrisi, Giovanni Luca
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 289 - 311
  • [40] Gaussian Estimates for the Solutions of Some One-dimensional Stochastic Equations
    Tien Dung Nguyen
    Nicolas Privault
    Giovanni Luca Torrisi
    [J]. Potential Analysis, 2015, 43 : 289 - 311