The a-function in six dimensions

被引:15
|
作者
Gracey, J. A. [1 ]
Jack, I. [1 ]
Poole, C. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
来源
关键词
Field Theories in Higher Dimensions; Renormalization Group; LOCAL RENORMALIZATION-GROUP; FIELD-THEORY; C-THEOREM; FEYNMAN-INTEGRALS; CONSISTENCY;
D O I
10.1007/JHEP01(2016)174
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The a-function is a proposed quantity defined in even dimensions which has a monotonic behaviour along RG flows, related to the beta-functions via a gradient flow equation. We study the a-function for a general scalar theory in six dimensions, using the beta-functions up to three-loop order for both the (MS) over bar and MOM schemes (the latter presented here for the first time at three loops).
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [21] The inverse approach to Dirac-type systems based on the A-function concept
    Gesztesy, Fritz
    Sakhnovich, Alexander
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (06)
  • [22] Massive dualities in six dimensions
    Behrndt, K
    Bergshoeff, E
    Roest, D
    Sundell, P
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) : 2177 - 2199
  • [23] Gauge unification in six dimensions
    Asaka, T
    Buchmüller, W
    Covi, L
    PHYSICS LETTERS B, 2001, 523 (1-2) : 199 - 204
  • [24] Six dimensions of sexual disgust
    Crosby, Courtney L.
    Durkee, Patrick K.
    Meston, Cindy M.
    Buss, David M.
    PERSONALITY AND INDIVIDUAL DIFFERENCES, 2020, 156
  • [25] Embedding of the brane into six dimensions
    Gogberashvili, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 4886 - 4888
  • [26] Discrete gauging in six dimensions
    Amihay Hanany
    Gabi Zafrir
    Journal of High Energy Physics, 2018
  • [27] String universality in six dimensions
    Kumar, Vijay
    Taylor, Washington
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 15 (02) : 325 - 353
  • [28] Spinning particle in six dimensions
    Lyakhovich, SL
    Sharapov, AA
    Shekhter, KM
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) : 4086 - 4103
  • [29] W symmetry in six dimensions
    Beem, Christopher
    Rastelli, Leonardo
    van Rees, Balt C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [30] Choptuik scaling in six dimensions
    Garfinkle, D
    Cutler, C
    Duncan, GC
    PHYSICAL REVIEW D, 1999, 60 (10):